perfecXion.ai

Performance Optimization

Master advanced performance optimization techniques for AI security systems. Learn model optimization, intelligent caching, horizontal scaling, GPU management, and cost-effective deployment strategies for high-throughput security operations.

95%
Latency Reduction
10x
Throughput Increase
80%
Cost Savings
99.9%
Uptime SLA

Core Optimization Areas

Model Optimization

  • • Model quantization and pruning
  • • Inference optimization
  • • Batch processing efficiency
  • • Memory usage reduction

Caching Strategies

  • • Multi-layer caching
  • • Intelligent cache invalidation
  • • Distributed caching
  • • Result prediction caching

Infrastructure Scaling

  • • Auto-scaling policies
  • • Load balancing optimization
  • • Container orchestration
  • • Edge deployment

Model Optimization Techniques

Model Quantization & Pruning

Reduce model size and improve inference speed while maintaining accuracy through advanced quantization and pruning techniques.

Model Optimization Framework

import torch
import torch.nn as nn
import torch.quantization as quant
from torch.nn.utils import prune
import numpy as np
from typing import Dict, Any

class ModelOptimizer:
    def __init__(self, model: nn.Module):
        self.model = model
        self.original_size = self._calculate_model_size()
        self.optimization_history = []
    
    def quantize_model(self, quantization_config: Dict[str, Any] = None) -> nn.Module:
        """Apply post-training quantization to reduce model size"""
        
        if quantization_config is None:
            quantization_config = {
                'backend': 'fbgemm',  # CPU backend
                'reduce_range': False,
                'qconfig_spec': {
                    '': torch.quantization.get_default_qconfig('fbgemm')
                }
            }
        
        # Prepare model for quantization
        self.model.eval()
        self.model.qconfig = quantization_config['qconfig_spec']['']
        
        # Prepare the model
        model_prepared = torch.quantization.prepare(self.model)
        
        # Calibration data (representative dataset)
        calibration_data = self._get_calibration_data()
        
        # Calibrate the model
        with torch.no_grad():
            for batch in calibration_data:
                model_prepared(batch)
        
        # Convert to quantized model
        quantized_model = torch.quantization.convert(model_prepared)
        
        # Validate performance
        accuracy_loss = self._validate_quantized_model(quantized_model)
        size_reduction = self._calculate_size_reduction(quantized_model)
        
        self.optimization_history.append({
            'technique': 'quantization',
            'accuracy_loss': accuracy_loss,
            'size_reduction': size_reduction,
            'config': quantization_config
        })
        
        return quantized_model
    
    def prune_model(self, pruning_ratio: float = 0.2, structured: bool = False) -> nn.Module:
        """Apply magnitude-based pruning to reduce model parameters"""
        
        model_copy = self._copy_model()
        
        if structured:
            # Structured pruning - remove entire channels/filters
            for name, module in model_copy.named_modules():
                if isinstance(module, (nn.Conv2d, nn.Linear)):
                    prune.ln_structured(
                        module, 
                        name='weight', 
                        amount=pruning_ratio, 
                        n=2, 
                        dim=0
                    )
        else:
            # Unstructured pruning - remove individual weights
            parameters_to_prune = []
            for name, module in model_copy.named_modules():
                if isinstance(module, (nn.Conv2d, nn.Linear)):
                    parameters_to_prune.append((module, 'weight'))
            
            prune.global_unstructured(
                parameters_to_prune,
                pruning_method=prune.L1Unstructured,
                amount=pruning_ratio,
            )
        
        # Remove pruning reparameterization
        for name, module in model_copy.named_modules():
            if isinstance(module, (nn.Conv2d, nn.Linear)):
                try:
                    prune.remove(module, 'weight')
                except ValueError:
                    pass  # No pruning mask to remove
        
        # Validate pruned model
        accuracy_loss = self._validate_pruned_model(model_copy)
        sparsity = self._calculate_sparsity(model_copy)
        
        self.optimization_history.append({
            'technique': 'pruning',
            'accuracy_loss': accuracy_loss,
            'sparsity': sparsity,
            'structured': structured,
            'ratio': pruning_ratio
        })
        
        return model_copy
    
    def optimize_inference(self, input_shape: tuple, device: str = 'cpu') -> Dict[str, Any]:
        """Optimize model for inference performance"""
        
        # Convert to TorchScript for optimization
        self.model.eval()
        dummy_input = torch.randn(input_shape).to(device)
        
        # Trace the model
        traced_model = torch.jit.trace(self.model, dummy_input)
        
        # Optimize for inference
        optimized_model = torch.jit.optimize_for_inference(traced_model)
        
        # Benchmark performance
        performance_metrics = self._benchmark_inference(
            original_model=self.model,
            optimized_model=optimized_model,
            input_shape=input_shape,
            device=device
        )
        
        self.optimization_history.append({
            'technique': 'inference_optimization',
            'performance_gain': performance_metrics['speedup'],
            'memory_reduction': performance_metrics['memory_reduction']
        })
        
        return {
            'optimized_model': optimized_model,
            'performance_metrics': performance_metrics
        }
    
    def knowledge_distillation(self, student_model: nn.Module, 
                              temperature: float = 3.0,
                              alpha: float = 0.7) -> nn.Module:
        """Use knowledge distillation to create smaller, faster model"""
        
        teacher_model = self.model.eval()
        student_model.train()
        
        # Loss functions
        criterion_hard = nn.CrossEntropyLoss()
        criterion_soft = nn.KLDivLoss(reduction='batchmean')
        
        optimizer = torch.optim.Adam(student_model.parameters(), lr=0.001)
        
        training_data = self._get_training_data()
        
        for epoch in range(50):  # Simplified training loop
            total_loss = 0
            for batch_idx, (data, target) in enumerate(training_data):
                optimizer.zero_grad()
                
                # Teacher predictions (soft targets)
                with torch.no_grad():
                    teacher_output = teacher_model(data)
                    soft_targets = torch.softmax(teacher_output / temperature, dim=1)
                
                # Student predictions
                student_output = student_model(data)
                soft_predictions = torch.log_softmax(student_output / temperature, dim=1)
                hard_predictions = student_output
                
                # Combined loss
                soft_loss = criterion_soft(soft_predictions, soft_targets) * (temperature ** 2)
                hard_loss = criterion_hard(hard_predictions, target)
                
                total_loss = alpha * soft_loss + (1 - alpha) * hard_loss
                total_loss.backward()
                optimizer.step()
        
        # Validate distilled model
        accuracy = self._validate_student_model(student_model)
        compression_ratio = self._calculate_compression_ratio(teacher_model, student_model)
        
        self.optimization_history.append({
            'technique': 'knowledge_distillation',
            'student_accuracy': accuracy,
            'compression_ratio': compression_ratio,
            'temperature': temperature,
            'alpha': alpha
        })
        
        return student_model
    
    def _calculate_model_size(self) -> int:
        """Calculate model size in bytes"""
        return sum(p.numel() * p.element_size() for p in self.model.parameters())
    
    def _benchmark_inference(self, original_model, optimized_model, 
                           input_shape, device, num_runs=1000):
        """Benchmark inference performance"""
        dummy_input = torch.randn(input_shape).to(device)
        
        # Warm up
        for _ in range(10):
            _ = original_model(dummy_input)
            _ = optimized_model(dummy_input)
        
        # Benchmark original model
        torch.cuda.synchronize() if device == 'cuda' else None
        start_time = time.time()
        
        for _ in range(num_runs):
            _ = original_model(dummy_input)
        
        torch.cuda.synchronize() if device == 'cuda' else None
        original_time = time.time() - start_time
        
        # Benchmark optimized model
        torch.cuda.synchronize() if device == 'cuda' else None
        start_time = time.time()
        
        for _ in range(num_runs):
            _ = optimized_model(dummy_input)
        
        torch.cuda.synchronize() if device == 'cuda' else None
        optimized_time = time.time() - start_time
        
        return {
            'original_time': original_time,
            'optimized_time': optimized_time,
            'speedup': original_time / optimized_time,
            'memory_reduction': self._calculate_memory_usage_reduction(
                original_model, optimized_model
            )
        }

# Usage example
import torchvision.models as models

# Load pre-trained model
model = models.resnet18(pretrained=True)
optimizer = ModelOptimizer(model)

# Apply quantization
quantized_model = optimizer.quantize_model()
print(f"Model size reduced by: {optimizer.optimization_history[-1]['size_reduction']:.2%}")

# Apply pruning
pruned_model = optimizer.prune_model(pruning_ratio=0.3)
print(f"Model sparsity: {optimizer.optimization_history[-1]['sparsity']:.2%}")

# Optimize for inference
inference_results = optimizer.optimize_inference((1, 3, 224, 224))
print(f"Inference speedup: {inference_results['performance_metrics']['speedup']:.2f}x")
Quantization Benefits
  • • 75% model size reduction
  • • 4x faster inference
  • • Lower memory usage
  • • Hardware acceleration support
  • • Minimal accuracy loss (<2%)
Pruning Benefits
  • • 90% parameter reduction
  • • Faster training and inference
  • • Reduced overfitting
  • • Better generalization
  • • Edge deployment ready

Intelligent Caching Strategies

Implement multi-layer caching with intelligent invalidation and prediction capabilities to dramatically reduce response times and computational overhead.

Advanced Caching System

import redis
import hashlib
import pickle
import time
import threading
from typing import Any, Optional, Dict, List
from dataclasses import dataclass
from abc import ABC, abstractmethod

@dataclass
class CacheEntry:
    value: Any
    timestamp: float
    ttl: float
    access_count: int = 0
    hit_score: float = 0.0

class CacheLayer(ABC):
    @abstractmethod
    def get(self, key: str) -> Optional[Any]:
        pass
    
    @abstractmethod
    def set(self, key: str, value: Any, ttl: float = 3600) -> bool:
        pass
    
    @abstractmethod
    def delete(self, key: str) -> bool:
        pass

class MemoryCache(CacheLayer):
    def __init__(self, max_size: int = 10000):
        self.cache: Dict[str, CacheEntry] = {}
        self.max_size = max_size
        self.lock = threading.RLock()
    
    def get(self, key: str) -> Optional[Any]:
        with self.lock:
            entry = self.cache.get(key)
            if entry is None:
                return None
            
            # Check TTL
            if time.time() - entry.timestamp > entry.ttl:
                del self.cache[key]
                return None
            
            # Update access statistics
            entry.access_count += 1
            entry.hit_score = self._calculate_hit_score(entry)
            
            return entry.value
    
    def set(self, key: str, value: Any, ttl: float = 3600) -> bool:
        with self.lock:
            # Evict if at capacity
            if len(self.cache) >= self.max_size:
                self._evict_lru()
            
            self.cache[key] = CacheEntry(
                value=value,
                timestamp=time.time(),
                ttl=ttl,
                access_count=1,
                hit_score=1.0
            )
            return True
    
    def _evict_lru(self):
        """Evict least recently used items"""
        if not self.cache:
            return
        
        # Find item with lowest hit score
        lru_key = min(self.cache.keys(), 
                     key=lambda k: self.cache[k].hit_score)
        del self.cache[lru_key]
    
    def _calculate_hit_score(self, entry: CacheEntry) -> float:
        """Calculate hit score based on recency and frequency"""
        age = time.time() - entry.timestamp
        frequency_score = entry.access_count / (age + 1)
        recency_score = 1 / (age + 1)
        return 0.7 * frequency_score + 0.3 * recency_score

class RedisCache(CacheLayer):
    def __init__(self, host: str = 'localhost', port: int = 6379, db: int = 0):
        self.redis_client = redis.Redis(host=host, port=port, db=db)
    
    def get(self, key: str) -> Optional[Any]:
        try:
            data = self.redis_client.get(key)
            if data is None:
                return None
            return pickle.loads(data)
        except Exception:
            return None
    
    def set(self, key: str, value: Any, ttl: float = 3600) -> bool:
        try:
            serialized = pickle.dumps(value)
            return self.redis_client.setex(key, int(ttl), serialized)
        except Exception:
            return False
    
    def delete(self, key: str) -> bool:
        try:
            return self.redis_client.delete(key) > 0
        except Exception:
            return False

class IntelligentCacheManager:
    def __init__(self):
        self.layers = [
            MemoryCache(max_size=1000),    # L1: In-memory
            RedisCache(),                   # L2: Distributed cache
        ]
        
        self.prediction_cache = {}
        self.access_patterns = {}
        self.cache_stats = {
            'hits': 0,
            'misses': 0,
            'predictions': 0,
            'prediction_accuracy': 0.0
        }
    
    def get(self, key: str) -> Optional[Any]:
        """Get value from cache with intelligent prediction"""
        
        # Try each cache layer
        for i, layer in enumerate(self.layers):
            value = layer.get(key)
            if value is not None:
                self.cache_stats['hits'] += 1
                
                # Promote to higher cache levels
                self._promote_to_higher_levels(key, value, i)
                
                # Update access patterns for prediction
                self._update_access_patterns(key)
                
                return value
        
        self.cache_stats['misses'] += 1
        return None
    
    def set(self, key: str, value: Any, ttl: float = 3600) -> bool:
        """Set value in all cache layers"""
        success = True
        
        for layer in self.layers:
            if not layer.set(key, value, ttl):
                success = False
        
        # Trigger predictive caching
        self._predict_related_keys(key)
        
        return success
    
    def intelligent_preload(self, base_key: str, related_keys: List[str]):
        """Preload related keys based on access patterns"""
        
        if base_key in self.access_patterns:
            pattern = self.access_patterns[base_key]
            
            # Predict which keys will be needed
            for related_key in related_keys:
                prediction_score = self._calculate_prediction_score(
                    base_key, related_key, pattern
                )
                
                if prediction_score > 0.7:  # High confidence prediction
                    # Preload the key if not already cached
                    if self.get(related_key) is None:
                        self._preload_key(related_key)
                        self.cache_stats['predictions'] += 1
    
    def batch_invalidate(self, pattern: str):
        """Intelligently invalidate cache entries matching pattern"""
        
        for layer in self.layers:
            if hasattr(layer, 'redis_client'):
                # Redis pattern matching
                keys = layer.redis_client.keys(pattern)
                if keys:
                    layer.redis_client.delete(*keys)
            else:
                # Memory cache pattern matching
                keys_to_delete = [k for k in layer.cache.keys() 
                                if self._matches_pattern(k, pattern)]
                for key in keys_to_delete:
                    layer.delete(key)
    
    def optimize_cache_sizes(self):
        """Dynamically optimize cache sizes based on hit rates"""
        
        total_hits = self.cache_stats['hits']
        total_requests = total_hits + self.cache_stats['misses']
        
        if total_requests > 1000:  # Enough data for optimization
            hit_rate = total_hits / total_requests
            
            # Adjust L1 cache size based on hit rate
            if hit_rate < 0.8:
                # Increase L1 cache size
                if hasattr(self.layers[0], 'max_size'):
                    self.layers[0].max_size = min(
                        self.layers[0].max_size * 1.2, 50000
                    )
            elif hit_rate > 0.95:
                # Decrease L1 cache size to save memory
                if hasattr(self.layers[0], 'max_size'):
                    self.layers[0].max_size = max(
                        self.layers[0].max_size * 0.8, 1000
                    )
    
    def get_cache_statistics(self) -> Dict[str, Any]:
        """Get comprehensive cache statistics"""
        
        total_requests = self.cache_stats['hits'] + self.cache_stats['misses']
        hit_rate = (self.cache_stats['hits'] / total_requests 
                   if total_requests > 0 else 0)
        
        return {
            'hit_rate': hit_rate,
            'total_requests': total_requests,
            'predictions_made': self.cache_stats['predictions'],
            'prediction_accuracy': self.cache_stats['prediction_accuracy'],
            'l1_size': len(self.layers[0].cache) if hasattr(self.layers[0], 'cache') else 0,
            'memory_usage': self._calculate_memory_usage(),
            'performance_gain': self._calculate_performance_gain()
        }
    
    def _promote_to_higher_levels(self, key: str, value: Any, found_level: int):
        """Promote frequently accessed items to higher cache levels"""
        for i in range(found_level):
            self.layers[i].set(key, value)
    
    def _update_access_patterns(self, key: str):
        """Update access patterns for intelligent prediction"""
        if key not in self.access_patterns:
            self.access_patterns[key] = {
                'access_times': [],
                'related_keys': set(),
                'frequency': 0
            }
        
        pattern = self.access_patterns[key]
        pattern['access_times'].append(time.time())
        pattern['frequency'] += 1
        
        # Keep only recent access times (last 1000)
        if len(pattern['access_times']) > 1000:
            pattern['access_times'] = pattern['access_times'][-1000:]

# Example usage for AI security caching
class AISecurityCache:
    def __init__(self):
        self.cache_manager = IntelligentCacheManager()
    
    def cache_scan_result(self, input_hash: str, scan_result: Dict[str, Any], 
                         ttl: float = 1800):  # 30 minutes
        """Cache AI security scan results"""
        cache_key = f"scan_result:{input_hash}"
        return self.cache_manager.set(cache_key, scan_result, ttl)
    
    def get_cached_scan(self, input_hash: str) -> Optional[Dict[str, Any]]:
        """Get cached scan result"""
        cache_key = f"scan_result:{input_hash}"
        return self.cache_manager.get(cache_key)
    
    def cache_model_prediction(self, model_id: str, input_hash: str, 
                              prediction: Any, confidence: float):
        """Cache model predictions with confidence-based TTL"""
        cache_key = f"prediction:{model_id}:{input_hash}"
        
        # Higher confidence predictions cached longer
        ttl = 3600 * confidence  # 1 hour at 100% confidence
        
        self.cache_manager.set(cache_key, {
            'prediction': prediction,
            'confidence': confidence,
            'timestamp': time.time()
        }, ttl)
    
    def preload_user_patterns(self, user_id: str):
        """Preload cache based on user access patterns"""
        base_key = f"user_patterns:{user_id}"
        
        # Get related keys that this user typically accesses
        related_keys = self._get_user_related_keys(user_id)
        
        self.cache_manager.intelligent_preload(base_key, related_keys)

# Usage example
cache = AISecurityCache()

# Cache a scan result
input_text = "Some user input to analyze"
input_hash = hashlib.sha256(input_text.encode()).hexdigest()

scan_result = {
    'risk_score': 0.75,
    'threats': ['prompt_injection'],
    'confidence': 0.92
}

cache.cache_scan_result(input_hash, scan_result)

# Retrieve cached result
cached_result = cache.get_cached_scan(input_hash)
if cached_result:
    print(f"Cache hit! Risk score: {cached_result['risk_score']}")
else:
    print("Cache miss - performing new scan")

Infrastructure Scaling & Auto-optimization

Auto-scaling & Load Management

Kubernetes Auto-scaling

# kubernetes-autoscaler.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: ai-security-service
spec:
  replicas: 3
  selector:
    matchLabels:
      app: ai-security
  template:
    metadata:
      labels:
        app: ai-security
    spec:
      containers:
      - name: ai-security
        image: perfecxion/ai-security:latest
        resources:
          requests:
            memory: "512Mi"
            cpu: "500m"
          limits:
            memory: "2Gi"
            cpu: "2000m"
        env:
        - name: MAX_WORKERS
          value: "4"
        - name: CACHE_SIZE
          value: "1GB"
        
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 30
          periodSeconds: 10
        
        readinessProbe:
          httpGet:
            path: /ready
            port: 8080
          initialDelaySeconds: 5
          periodSeconds: 5

---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: ai-security-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: ai-security-service
  minReplicas: 2
  maxReplicas: 50
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  - type: Pods
    pods:
      metric:
        name: requests_per_second
      target:
        type: AverageValue
        averageValue: "100"
  
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 100
        periodSeconds: 15
      - type: Pods
        value: 2
        periodSeconds: 60
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 10
        periodSeconds: 60

---
apiVersion: v1
kind: Service
metadata:
  name: ai-security-service
spec:
  selector:
    app: ai-security
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8080
  type: LoadBalancer

Dynamic Load Balancing

# nginx-dynamic-config.conf
upstream ai_security_backend {
    least_conn;
    
    # Dynamic upstream configuration
    server ai-security-1:8080 weight=3 max_fails=3 fail_timeout=30s;
    server ai-security-2:8080 weight=3 max_fails=3 fail_timeout=30s;
    server ai-security-3:8080 weight=2 max_fails=3 fail_timeout=30s;
    
    # Health check
    keepalive 32;
}

# Adaptive rate limiting
map $request_uri $rate_limit_key {
    ~*/api/scan/batch    "batch_$binary_remote_addr";
    ~*/api/scan          "scan_$binary_remote_addr";
    default              "general_$binary_remote_addr";
}

# Rate limit zones
limit_req_zone $rate_limit_key zone=batch_limit:10m rate=10r/m;
limit_req_zone $rate_limit_key zone=scan_limit:10m rate=100r/m;
limit_req_zone $rate_limit_key zone=general_limit:10m rate=1000r/m;

server {
    listen 80;
    server_name api.perfecxion.ai;
    
    # Intelligent routing based on request type
    location /api/scan/batch {
        limit_req zone=batch_limit burst=5 nodelay;
        
        # Route batch requests to specific instances
        proxy_pass http://ai_security_backend;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Request-Type "batch";
        
        # Longer timeout for batch operations
        proxy_connect_timeout 10s;
        proxy_send_timeout 300s;
        proxy_read_timeout 300s;
    }
    
    location /api/scan {
        limit_req zone=scan_limit burst=20 nodelay;
        
        proxy_pass http://ai_security_backend;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Request-Type "single";
        
        # Standard timeout for single requests
        proxy_connect_timeout 5s;
        proxy_send_timeout 30s;
        proxy_read_timeout 30s;
    }
    
    # Circuit breaker implementation
    location @fallback {
        return 503 '{"error": "Service temporarily unavailable", "retry_after": 30}';
        add_header Content-Type application/json;
    }
    
    # Health monitoring
    location /nginx-health {
        access_log off;
        return 200 "healthy\n";
        add_header Content-Type text/plain;
    }
}

Performance Monitoring & Auto-optimization

import asyncio
import time
import psutil
import threading
from typing import Dict, List, Any
from dataclasses import dataclass
from datetime import datetime, timedelta

@dataclass
class PerformanceMetrics:
    cpu_usage: float
    memory_usage: float
    response_time: float
    throughput: float
    error_rate: float
    active_connections: int
    timestamp: datetime

class PerformanceOptimizer:
    def __init__(self):
        self.metrics_history: List[PerformanceMetrics] = []
        self.optimization_rules = {
            'high_cpu': {'threshold': 80, 'action': 'scale_out'},
            'high_memory': {'threshold': 85, 'action': 'increase_memory'},
            'high_latency': {'threshold': 2000, 'action': 'optimize_cache'},
            'high_error_rate': {'threshold': 0.05, 'action': 'circuit_breaker'}
        }
        
        self.auto_optimization_enabled = True
        self.monitoring_thread = None
        
    def start_monitoring(self):
        """Start continuous performance monitoring"""
        self.monitoring_thread = threading.Thread(
            target=self._monitoring_loop,
            daemon=True
        )
        self.monitoring_thread.start()
    
    def _monitoring_loop(self):
        """Continuous monitoring loop"""
        while True:
            metrics = self._collect_metrics()
            self.metrics_history.append(metrics)
            
            # Keep only last 1000 metrics
            if len(self.metrics_history) > 1000:
                self.metrics_history = self.metrics_history[-1000:]
            
            # Check for optimization opportunities
            if self.auto_optimization_enabled:
                self._check_optimization_triggers(metrics)
            
            time.sleep(10)  # Collect metrics every 10 seconds
    
    def _collect_metrics(self) -> PerformanceMetrics:
        """Collect current system metrics"""
        
        # System metrics
        cpu_usage = psutil.cpu_percent(interval=1)
        memory = psutil.virtual_memory()
        memory_usage = memory.percent
        
        # Application-specific metrics (mock data for example)
        response_time = self._get_avg_response_time()
        throughput = self._get_current_throughput()
        error_rate = self._get_error_rate()
        active_connections = self._get_active_connections()
        
        return PerformanceMetrics(
            cpu_usage=cpu_usage,
            memory_usage=memory_usage,
            response_time=response_time,
            throughput=throughput,
            error_rate=error_rate,
            active_connections=active_connections,
            timestamp=datetime.now()
        )
    
    def _check_optimization_triggers(self, metrics: PerformanceMetrics):
        """Check if any optimization triggers are met"""
        
        actions_to_take = []
        
        # CPU optimization
        if metrics.cpu_usage > self.optimization_rules['high_cpu']['threshold']:
            actions_to_take.append('scale_out')
        
        # Memory optimization
        if metrics.memory_usage > self.optimization_rules['high_memory']['threshold']:
            actions_to_take.append('optimize_memory')
        
        # Latency optimization
        if metrics.response_time > self.optimization_rules['high_latency']['threshold']:
            actions_to_take.append('optimize_cache')
        
        # Error rate optimization
        if metrics.error_rate > self.optimization_rules['high_error_rate']['threshold']:
            actions_to_take.append('circuit_breaker')
        
        # Execute optimization actions
        for action in actions_to_take:
            self._execute_optimization_action(action, metrics)
    
    def _execute_optimization_action(self, action: str, metrics: PerformanceMetrics):
        """Execute specific optimization action"""
        
        print(f"Executing optimization action: {action}")
        
        if action == 'scale_out':
            self._scale_out_instances()
        elif action == 'optimize_memory':
            self._optimize_memory_usage()
        elif action == 'optimize_cache':
            self._optimize_cache_configuration()
        elif action == 'circuit_breaker':
            self._enable_circuit_breaker()
    
    def _scale_out_instances(self):
        """Scale out application instances"""
        # In a real implementation, this would call Kubernetes API
        # or cloud provider APIs to scale out
        print("Scaling out instances due to high CPU usage")
        
        # Example: kubectl scale deployment ai-security-service --replicas=6
        import subprocess
        try:
            result = subprocess.run([
                'kubectl', 'scale', 'deployment', 'ai-security-service', 
                '--replicas=6'
            ], capture_output=True, text=True)
            
            if result.returncode == 0:
                print("Successfully scaled out instances")
            else:
                print(f"Failed to scale out: {result.stderr}")
        except Exception as e:
            print(f"Error scaling out: {e}")
    
    def _optimize_memory_usage(self):
        """Optimize memory usage"""
        print("Optimizing memory usage")
        
        # Clear caches
        self._clear_low_priority_caches()
        
        # Adjust garbage collection
        import gc
        gc.collect()
        
        # Reduce cache sizes temporarily
        self._reduce_cache_sizes()
    
    def _optimize_cache_configuration(self):
        """Optimize cache configuration for better performance"""
        print("Optimizing cache configuration")
        
        # Increase cache hit ratio
        self._increase_cache_sizes()
        
        # Implement more aggressive prefetching
        self._enable_aggressive_prefetching()
    
    def get_optimization_recommendations(self) -> List[Dict[str, Any]]:
        """Get performance optimization recommendations"""
        
        if len(self.metrics_history) < 10:
            return []
        
        recent_metrics = self.metrics_history[-10:]
        avg_cpu = sum(m.cpu_usage for m in recent_metrics) / len(recent_metrics)
        avg_memory = sum(m.memory_usage for m in recent_metrics) / len(recent_metrics)
        avg_response_time = sum(m.response_time for m in recent_metrics) / len(recent_metrics)
        
        recommendations = []
        
        if avg_cpu > 70:
            recommendations.append({
                'type': 'scaling',
                'priority': 'high',
                'action': 'Consider horizontal scaling',
                'details': f'Average CPU usage: {avg_cpu:.1f}%'
            })
        
        if avg_memory > 80:
            recommendations.append({
                'type': 'memory',
                'priority': 'high',
                'action': 'Optimize memory usage or increase memory limits',
                'details': f'Average memory usage: {avg_memory:.1f}%'
            })
        
        if avg_response_time > 1000:
            recommendations.append({
                'type': 'performance',
                'priority': 'medium',
                'action': 'Implement caching or optimize algorithms',
                'details': f'Average response time: {avg_response_time:.0f}ms'
            })
        
        return recommendations

# Usage example
optimizer = PerformanceOptimizer()
optimizer.start_monitoring()

# Get recommendations
recommendations = optimizer.get_optimization_recommendations()
for rec in recommendations:
    print(f"[{rec['priority'].upper()}] {rec['action']}: {rec['details']}")

Performance Optimization Best Practices

Model Optimization

  • Use quantization for 4x smaller models with minimal accuracy loss
  • Implement structured pruning for faster inference
  • Use knowledge distillation for edge deployment
  • Enable mixed-precision training and inference
  • Batch similar requests for improved throughput

Infrastructure Optimization

  • Implement multi-layer caching with intelligent invalidation
  • Use auto-scaling based on multiple metrics
  • Deploy models closer to users with edge computing
  • Monitor and optimize based on real-time metrics
  • Use circuit breakers for resilient architectures

Cost Optimization Strategies

Resource Optimization

  • • Right-sizing compute instances
  • • Spot instance utilization
  • • Reserved capacity planning
  • • Auto-shutdown idle resources
  • • Efficient resource scheduling

Model Efficiency

  • • Model compression techniques
  • • Inference optimization
  • • Batch processing strategies
  • • Model sharing and reuse
  • • Efficient data preprocessing

Storage & Bandwidth

  • • Data lifecycle management
  • • Compression and deduplication
  • • CDN optimization
  • • Efficient data transfer
  • • Archive cold data