Performance Optimization
Master advanced performance optimization techniques for AI security systems. Learn model optimization, intelligent caching, horizontal scaling, GPU management, and cost-effective deployment strategies for high-throughput security operations.
95%
Latency Reduction
10x
Throughput Increase
80%
Cost Savings
99.9%
Uptime SLA
Core Optimization Areas
Model Optimization
- • Model quantization and pruning
- • Inference optimization
- • Batch processing efficiency
- • Memory usage reduction
Caching Strategies
- • Multi-layer caching
- • Intelligent cache invalidation
- • Distributed caching
- • Result prediction caching
Infrastructure Scaling
- • Auto-scaling policies
- • Load balancing optimization
- • Container orchestration
- • Edge deployment
Model Optimization Techniques
Model Quantization & Pruning
Reduce model size and improve inference speed while maintaining accuracy through advanced quantization and pruning techniques.
Model Optimization Framework
import torch import torch.nn as nn import torch.quantization as quant from torch.nn.utils import prune import numpy as np from typing import Dict, Any class ModelOptimizer: def __init__(self, model: nn.Module): self.model = model self.original_size = self._calculate_model_size() self.optimization_history = [] def quantize_model(self, quantization_config: Dict[str, Any] = None) -> nn.Module: """Apply post-training quantization to reduce model size""" if quantization_config is None: quantization_config = { 'backend': 'fbgemm', # CPU backend 'reduce_range': False, 'qconfig_spec': { '': torch.quantization.get_default_qconfig('fbgemm') } } # Prepare model for quantization self.model.eval() self.model.qconfig = quantization_config['qconfig_spec'][''] # Prepare the model model_prepared = torch.quantization.prepare(self.model) # Calibration data (representative dataset) calibration_data = self._get_calibration_data() # Calibrate the model with torch.no_grad(): for batch in calibration_data: model_prepared(batch) # Convert to quantized model quantized_model = torch.quantization.convert(model_prepared) # Validate performance accuracy_loss = self._validate_quantized_model(quantized_model) size_reduction = self._calculate_size_reduction(quantized_model) self.optimization_history.append({ 'technique': 'quantization', 'accuracy_loss': accuracy_loss, 'size_reduction': size_reduction, 'config': quantization_config }) return quantized_model def prune_model(self, pruning_ratio: float = 0.2, structured: bool = False) -> nn.Module: """Apply magnitude-based pruning to reduce model parameters""" model_copy = self._copy_model() if structured: # Structured pruning - remove entire channels/filters for name, module in model_copy.named_modules(): if isinstance(module, (nn.Conv2d, nn.Linear)): prune.ln_structured( module, name='weight', amount=pruning_ratio, n=2, dim=0 ) else: # Unstructured pruning - remove individual weights parameters_to_prune = [] for name, module in model_copy.named_modules(): if isinstance(module, (nn.Conv2d, nn.Linear)): parameters_to_prune.append((module, 'weight')) prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=pruning_ratio, ) # Remove pruning reparameterization for name, module in model_copy.named_modules(): if isinstance(module, (nn.Conv2d, nn.Linear)): try: prune.remove(module, 'weight') except ValueError: pass # No pruning mask to remove # Validate pruned model accuracy_loss = self._validate_pruned_model(model_copy) sparsity = self._calculate_sparsity(model_copy) self.optimization_history.append({ 'technique': 'pruning', 'accuracy_loss': accuracy_loss, 'sparsity': sparsity, 'structured': structured, 'ratio': pruning_ratio }) return model_copy def optimize_inference(self, input_shape: tuple, device: str = 'cpu') -> Dict[str, Any]: """Optimize model for inference performance""" # Convert to TorchScript for optimization self.model.eval() dummy_input = torch.randn(input_shape).to(device) # Trace the model traced_model = torch.jit.trace(self.model, dummy_input) # Optimize for inference optimized_model = torch.jit.optimize_for_inference(traced_model) # Benchmark performance performance_metrics = self._benchmark_inference( original_model=self.model, optimized_model=optimized_model, input_shape=input_shape, device=device ) self.optimization_history.append({ 'technique': 'inference_optimization', 'performance_gain': performance_metrics['speedup'], 'memory_reduction': performance_metrics['memory_reduction'] }) return { 'optimized_model': optimized_model, 'performance_metrics': performance_metrics } def knowledge_distillation(self, student_model: nn.Module, temperature: float = 3.0, alpha: float = 0.7) -> nn.Module: """Use knowledge distillation to create smaller, faster model""" teacher_model = self.model.eval() student_model.train() # Loss functions criterion_hard = nn.CrossEntropyLoss() criterion_soft = nn.KLDivLoss(reduction='batchmean') optimizer = torch.optim.Adam(student_model.parameters(), lr=0.001) training_data = self._get_training_data() for epoch in range(50): # Simplified training loop total_loss = 0 for batch_idx, (data, target) in enumerate(training_data): optimizer.zero_grad() # Teacher predictions (soft targets) with torch.no_grad(): teacher_output = teacher_model(data) soft_targets = torch.softmax(teacher_output / temperature, dim=1) # Student predictions student_output = student_model(data) soft_predictions = torch.log_softmax(student_output / temperature, dim=1) hard_predictions = student_output # Combined loss soft_loss = criterion_soft(soft_predictions, soft_targets) * (temperature ** 2) hard_loss = criterion_hard(hard_predictions, target) total_loss = alpha * soft_loss + (1 - alpha) * hard_loss total_loss.backward() optimizer.step() # Validate distilled model accuracy = self._validate_student_model(student_model) compression_ratio = self._calculate_compression_ratio(teacher_model, student_model) self.optimization_history.append({ 'technique': 'knowledge_distillation', 'student_accuracy': accuracy, 'compression_ratio': compression_ratio, 'temperature': temperature, 'alpha': alpha }) return student_model def _calculate_model_size(self) -> int: """Calculate model size in bytes""" return sum(p.numel() * p.element_size() for p in self.model.parameters()) def _benchmark_inference(self, original_model, optimized_model, input_shape, device, num_runs=1000): """Benchmark inference performance""" dummy_input = torch.randn(input_shape).to(device) # Warm up for _ in range(10): _ = original_model(dummy_input) _ = optimized_model(dummy_input) # Benchmark original model torch.cuda.synchronize() if device == 'cuda' else None start_time = time.time() for _ in range(num_runs): _ = original_model(dummy_input) torch.cuda.synchronize() if device == 'cuda' else None original_time = time.time() - start_time # Benchmark optimized model torch.cuda.synchronize() if device == 'cuda' else None start_time = time.time() for _ in range(num_runs): _ = optimized_model(dummy_input) torch.cuda.synchronize() if device == 'cuda' else None optimized_time = time.time() - start_time return { 'original_time': original_time, 'optimized_time': optimized_time, 'speedup': original_time / optimized_time, 'memory_reduction': self._calculate_memory_usage_reduction( original_model, optimized_model ) } # Usage example import torchvision.models as models # Load pre-trained model model = models.resnet18(pretrained=True) optimizer = ModelOptimizer(model) # Apply quantization quantized_model = optimizer.quantize_model() print(f"Model size reduced by: {optimizer.optimization_history[-1]['size_reduction']:.2%}") # Apply pruning pruned_model = optimizer.prune_model(pruning_ratio=0.3) print(f"Model sparsity: {optimizer.optimization_history[-1]['sparsity']:.2%}") # Optimize for inference inference_results = optimizer.optimize_inference((1, 3, 224, 224)) print(f"Inference speedup: {inference_results['performance_metrics']['speedup']:.2f}x")
Quantization Benefits
- • 75% model size reduction
- • 4x faster inference
- • Lower memory usage
- • Hardware acceleration support
- • Minimal accuracy loss (<2%)
Pruning Benefits
- • 90% parameter reduction
- • Faster training and inference
- • Reduced overfitting
- • Better generalization
- • Edge deployment ready
Intelligent Caching Strategies
Implement multi-layer caching with intelligent invalidation and prediction capabilities to dramatically reduce response times and computational overhead.
Advanced Caching System
import redis import hashlib import pickle import time import threading from typing import Any, Optional, Dict, List from dataclasses import dataclass from abc import ABC, abstractmethod @dataclass class CacheEntry: value: Any timestamp: float ttl: float access_count: int = 0 hit_score: float = 0.0 class CacheLayer(ABC): @abstractmethod def get(self, key: str) -> Optional[Any]: pass @abstractmethod def set(self, key: str, value: Any, ttl: float = 3600) -> bool: pass @abstractmethod def delete(self, key: str) -> bool: pass class MemoryCache(CacheLayer): def __init__(self, max_size: int = 10000): self.cache: Dict[str, CacheEntry] = {} self.max_size = max_size self.lock = threading.RLock() def get(self, key: str) -> Optional[Any]: with self.lock: entry = self.cache.get(key) if entry is None: return None # Check TTL if time.time() - entry.timestamp > entry.ttl: del self.cache[key] return None # Update access statistics entry.access_count += 1 entry.hit_score = self._calculate_hit_score(entry) return entry.value def set(self, key: str, value: Any, ttl: float = 3600) -> bool: with self.lock: # Evict if at capacity if len(self.cache) >= self.max_size: self._evict_lru() self.cache[key] = CacheEntry( value=value, timestamp=time.time(), ttl=ttl, access_count=1, hit_score=1.0 ) return True def _evict_lru(self): """Evict least recently used items""" if not self.cache: return # Find item with lowest hit score lru_key = min(self.cache.keys(), key=lambda k: self.cache[k].hit_score) del self.cache[lru_key] def _calculate_hit_score(self, entry: CacheEntry) -> float: """Calculate hit score based on recency and frequency""" age = time.time() - entry.timestamp frequency_score = entry.access_count / (age + 1) recency_score = 1 / (age + 1) return 0.7 * frequency_score + 0.3 * recency_score class RedisCache(CacheLayer): def __init__(self, host: str = 'localhost', port: int = 6379, db: int = 0): self.redis_client = redis.Redis(host=host, port=port, db=db) def get(self, key: str) -> Optional[Any]: try: data = self.redis_client.get(key) if data is None: return None return pickle.loads(data) except Exception: return None def set(self, key: str, value: Any, ttl: float = 3600) -> bool: try: serialized = pickle.dumps(value) return self.redis_client.setex(key, int(ttl), serialized) except Exception: return False def delete(self, key: str) -> bool: try: return self.redis_client.delete(key) > 0 except Exception: return False class IntelligentCacheManager: def __init__(self): self.layers = [ MemoryCache(max_size=1000), # L1: In-memory RedisCache(), # L2: Distributed cache ] self.prediction_cache = {} self.access_patterns = {} self.cache_stats = { 'hits': 0, 'misses': 0, 'predictions': 0, 'prediction_accuracy': 0.0 } def get(self, key: str) -> Optional[Any]: """Get value from cache with intelligent prediction""" # Try each cache layer for i, layer in enumerate(self.layers): value = layer.get(key) if value is not None: self.cache_stats['hits'] += 1 # Promote to higher cache levels self._promote_to_higher_levels(key, value, i) # Update access patterns for prediction self._update_access_patterns(key) return value self.cache_stats['misses'] += 1 return None def set(self, key: str, value: Any, ttl: float = 3600) -> bool: """Set value in all cache layers""" success = True for layer in self.layers: if not layer.set(key, value, ttl): success = False # Trigger predictive caching self._predict_related_keys(key) return success def intelligent_preload(self, base_key: str, related_keys: List[str]): """Preload related keys based on access patterns""" if base_key in self.access_patterns: pattern = self.access_patterns[base_key] # Predict which keys will be needed for related_key in related_keys: prediction_score = self._calculate_prediction_score( base_key, related_key, pattern ) if prediction_score > 0.7: # High confidence prediction # Preload the key if not already cached if self.get(related_key) is None: self._preload_key(related_key) self.cache_stats['predictions'] += 1 def batch_invalidate(self, pattern: str): """Intelligently invalidate cache entries matching pattern""" for layer in self.layers: if hasattr(layer, 'redis_client'): # Redis pattern matching keys = layer.redis_client.keys(pattern) if keys: layer.redis_client.delete(*keys) else: # Memory cache pattern matching keys_to_delete = [k for k in layer.cache.keys() if self._matches_pattern(k, pattern)] for key in keys_to_delete: layer.delete(key) def optimize_cache_sizes(self): """Dynamically optimize cache sizes based on hit rates""" total_hits = self.cache_stats['hits'] total_requests = total_hits + self.cache_stats['misses'] if total_requests > 1000: # Enough data for optimization hit_rate = total_hits / total_requests # Adjust L1 cache size based on hit rate if hit_rate < 0.8: # Increase L1 cache size if hasattr(self.layers[0], 'max_size'): self.layers[0].max_size = min( self.layers[0].max_size * 1.2, 50000 ) elif hit_rate > 0.95: # Decrease L1 cache size to save memory if hasattr(self.layers[0], 'max_size'): self.layers[0].max_size = max( self.layers[0].max_size * 0.8, 1000 ) def get_cache_statistics(self) -> Dict[str, Any]: """Get comprehensive cache statistics""" total_requests = self.cache_stats['hits'] + self.cache_stats['misses'] hit_rate = (self.cache_stats['hits'] / total_requests if total_requests > 0 else 0) return { 'hit_rate': hit_rate, 'total_requests': total_requests, 'predictions_made': self.cache_stats['predictions'], 'prediction_accuracy': self.cache_stats['prediction_accuracy'], 'l1_size': len(self.layers[0].cache) if hasattr(self.layers[0], 'cache') else 0, 'memory_usage': self._calculate_memory_usage(), 'performance_gain': self._calculate_performance_gain() } def _promote_to_higher_levels(self, key: str, value: Any, found_level: int): """Promote frequently accessed items to higher cache levels""" for i in range(found_level): self.layers[i].set(key, value) def _update_access_patterns(self, key: str): """Update access patterns for intelligent prediction""" if key not in self.access_patterns: self.access_patterns[key] = { 'access_times': [], 'related_keys': set(), 'frequency': 0 } pattern = self.access_patterns[key] pattern['access_times'].append(time.time()) pattern['frequency'] += 1 # Keep only recent access times (last 1000) if len(pattern['access_times']) > 1000: pattern['access_times'] = pattern['access_times'][-1000:] # Example usage for AI security caching class AISecurityCache: def __init__(self): self.cache_manager = IntelligentCacheManager() def cache_scan_result(self, input_hash: str, scan_result: Dict[str, Any], ttl: float = 1800): # 30 minutes """Cache AI security scan results""" cache_key = f"scan_result:{input_hash}" return self.cache_manager.set(cache_key, scan_result, ttl) def get_cached_scan(self, input_hash: str) -> Optional[Dict[str, Any]]: """Get cached scan result""" cache_key = f"scan_result:{input_hash}" return self.cache_manager.get(cache_key) def cache_model_prediction(self, model_id: str, input_hash: str, prediction: Any, confidence: float): """Cache model predictions with confidence-based TTL""" cache_key = f"prediction:{model_id}:{input_hash}" # Higher confidence predictions cached longer ttl = 3600 * confidence # 1 hour at 100% confidence self.cache_manager.set(cache_key, { 'prediction': prediction, 'confidence': confidence, 'timestamp': time.time() }, ttl) def preload_user_patterns(self, user_id: str): """Preload cache based on user access patterns""" base_key = f"user_patterns:{user_id}" # Get related keys that this user typically accesses related_keys = self._get_user_related_keys(user_id) self.cache_manager.intelligent_preload(base_key, related_keys) # Usage example cache = AISecurityCache() # Cache a scan result input_text = "Some user input to analyze" input_hash = hashlib.sha256(input_text.encode()).hexdigest() scan_result = { 'risk_score': 0.75, 'threats': ['prompt_injection'], 'confidence': 0.92 } cache.cache_scan_result(input_hash, scan_result) # Retrieve cached result cached_result = cache.get_cached_scan(input_hash) if cached_result: print(f"Cache hit! Risk score: {cached_result['risk_score']}") else: print("Cache miss - performing new scan")
Infrastructure Scaling & Auto-optimization
Auto-scaling & Load Management
Kubernetes Auto-scaling
# kubernetes-autoscaler.yaml apiVersion: apps/v1 kind: Deployment metadata: name: ai-security-service spec: replicas: 3 selector: matchLabels: app: ai-security template: metadata: labels: app: ai-security spec: containers: - name: ai-security image: perfecxion/ai-security:latest resources: requests: memory: "512Mi" cpu: "500m" limits: memory: "2Gi" cpu: "2000m" env: - name: MAX_WORKERS value: "4" - name: CACHE_SIZE value: "1GB" livenessProbe: httpGet: path: /health port: 8080 initialDelaySeconds: 30 periodSeconds: 10 readinessProbe: httpGet: path: /ready port: 8080 initialDelaySeconds: 5 periodSeconds: 5 --- apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: ai-security-hpa spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: ai-security-service minReplicas: 2 maxReplicas: 50 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 70 - type: Resource resource: name: memory target: type: Utilization averageUtilization: 80 - type: Pods pods: metric: name: requests_per_second target: type: AverageValue averageValue: "100" behavior: scaleUp: stabilizationWindowSeconds: 60 policies: - type: Percent value: 100 periodSeconds: 15 - type: Pods value: 2 periodSeconds: 60 scaleDown: stabilizationWindowSeconds: 300 policies: - type: Percent value: 10 periodSeconds: 60 --- apiVersion: v1 kind: Service metadata: name: ai-security-service spec: selector: app: ai-security ports: - protocol: TCP port: 80 targetPort: 8080 type: LoadBalancer
Dynamic Load Balancing
# nginx-dynamic-config.conf upstream ai_security_backend { least_conn; # Dynamic upstream configuration server ai-security-1:8080 weight=3 max_fails=3 fail_timeout=30s; server ai-security-2:8080 weight=3 max_fails=3 fail_timeout=30s; server ai-security-3:8080 weight=2 max_fails=3 fail_timeout=30s; # Health check keepalive 32; } # Adaptive rate limiting map $request_uri $rate_limit_key { ~*/api/scan/batch "batch_$binary_remote_addr"; ~*/api/scan "scan_$binary_remote_addr"; default "general_$binary_remote_addr"; } # Rate limit zones limit_req_zone $rate_limit_key zone=batch_limit:10m rate=10r/m; limit_req_zone $rate_limit_key zone=scan_limit:10m rate=100r/m; limit_req_zone $rate_limit_key zone=general_limit:10m rate=1000r/m; server { listen 80; server_name api.perfecxion.ai; # Intelligent routing based on request type location /api/scan/batch { limit_req zone=batch_limit burst=5 nodelay; # Route batch requests to specific instances proxy_pass http://ai_security_backend; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Request-Type "batch"; # Longer timeout for batch operations proxy_connect_timeout 10s; proxy_send_timeout 300s; proxy_read_timeout 300s; } location /api/scan { limit_req zone=scan_limit burst=20 nodelay; proxy_pass http://ai_security_backend; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Request-Type "single"; # Standard timeout for single requests proxy_connect_timeout 5s; proxy_send_timeout 30s; proxy_read_timeout 30s; } # Circuit breaker implementation location @fallback { return 503 '{"error": "Service temporarily unavailable", "retry_after": 30}'; add_header Content-Type application/json; } # Health monitoring location /nginx-health { access_log off; return 200 "healthy\n"; add_header Content-Type text/plain; } }
Performance Monitoring & Auto-optimization
import asyncio import time import psutil import threading from typing import Dict, List, Any from dataclasses import dataclass from datetime import datetime, timedelta @dataclass class PerformanceMetrics: cpu_usage: float memory_usage: float response_time: float throughput: float error_rate: float active_connections: int timestamp: datetime class PerformanceOptimizer: def __init__(self): self.metrics_history: List[PerformanceMetrics] = [] self.optimization_rules = { 'high_cpu': {'threshold': 80, 'action': 'scale_out'}, 'high_memory': {'threshold': 85, 'action': 'increase_memory'}, 'high_latency': {'threshold': 2000, 'action': 'optimize_cache'}, 'high_error_rate': {'threshold': 0.05, 'action': 'circuit_breaker'} } self.auto_optimization_enabled = True self.monitoring_thread = None def start_monitoring(self): """Start continuous performance monitoring""" self.monitoring_thread = threading.Thread( target=self._monitoring_loop, daemon=True ) self.monitoring_thread.start() def _monitoring_loop(self): """Continuous monitoring loop""" while True: metrics = self._collect_metrics() self.metrics_history.append(metrics) # Keep only last 1000 metrics if len(self.metrics_history) > 1000: self.metrics_history = self.metrics_history[-1000:] # Check for optimization opportunities if self.auto_optimization_enabled: self._check_optimization_triggers(metrics) time.sleep(10) # Collect metrics every 10 seconds def _collect_metrics(self) -> PerformanceMetrics: """Collect current system metrics""" # System metrics cpu_usage = psutil.cpu_percent(interval=1) memory = psutil.virtual_memory() memory_usage = memory.percent # Application-specific metrics (mock data for example) response_time = self._get_avg_response_time() throughput = self._get_current_throughput() error_rate = self._get_error_rate() active_connections = self._get_active_connections() return PerformanceMetrics( cpu_usage=cpu_usage, memory_usage=memory_usage, response_time=response_time, throughput=throughput, error_rate=error_rate, active_connections=active_connections, timestamp=datetime.now() ) def _check_optimization_triggers(self, metrics: PerformanceMetrics): """Check if any optimization triggers are met""" actions_to_take = [] # CPU optimization if metrics.cpu_usage > self.optimization_rules['high_cpu']['threshold']: actions_to_take.append('scale_out') # Memory optimization if metrics.memory_usage > self.optimization_rules['high_memory']['threshold']: actions_to_take.append('optimize_memory') # Latency optimization if metrics.response_time > self.optimization_rules['high_latency']['threshold']: actions_to_take.append('optimize_cache') # Error rate optimization if metrics.error_rate > self.optimization_rules['high_error_rate']['threshold']: actions_to_take.append('circuit_breaker') # Execute optimization actions for action in actions_to_take: self._execute_optimization_action(action, metrics) def _execute_optimization_action(self, action: str, metrics: PerformanceMetrics): """Execute specific optimization action""" print(f"Executing optimization action: {action}") if action == 'scale_out': self._scale_out_instances() elif action == 'optimize_memory': self._optimize_memory_usage() elif action == 'optimize_cache': self._optimize_cache_configuration() elif action == 'circuit_breaker': self._enable_circuit_breaker() def _scale_out_instances(self): """Scale out application instances""" # In a real implementation, this would call Kubernetes API # or cloud provider APIs to scale out print("Scaling out instances due to high CPU usage") # Example: kubectl scale deployment ai-security-service --replicas=6 import subprocess try: result = subprocess.run([ 'kubectl', 'scale', 'deployment', 'ai-security-service', '--replicas=6' ], capture_output=True, text=True) if result.returncode == 0: print("Successfully scaled out instances") else: print(f"Failed to scale out: {result.stderr}") except Exception as e: print(f"Error scaling out: {e}") def _optimize_memory_usage(self): """Optimize memory usage""" print("Optimizing memory usage") # Clear caches self._clear_low_priority_caches() # Adjust garbage collection import gc gc.collect() # Reduce cache sizes temporarily self._reduce_cache_sizes() def _optimize_cache_configuration(self): """Optimize cache configuration for better performance""" print("Optimizing cache configuration") # Increase cache hit ratio self._increase_cache_sizes() # Implement more aggressive prefetching self._enable_aggressive_prefetching() def get_optimization_recommendations(self) -> List[Dict[str, Any]]: """Get performance optimization recommendations""" if len(self.metrics_history) < 10: return [] recent_metrics = self.metrics_history[-10:] avg_cpu = sum(m.cpu_usage for m in recent_metrics) / len(recent_metrics) avg_memory = sum(m.memory_usage for m in recent_metrics) / len(recent_metrics) avg_response_time = sum(m.response_time for m in recent_metrics) / len(recent_metrics) recommendations = [] if avg_cpu > 70: recommendations.append({ 'type': 'scaling', 'priority': 'high', 'action': 'Consider horizontal scaling', 'details': f'Average CPU usage: {avg_cpu:.1f}%' }) if avg_memory > 80: recommendations.append({ 'type': 'memory', 'priority': 'high', 'action': 'Optimize memory usage or increase memory limits', 'details': f'Average memory usage: {avg_memory:.1f}%' }) if avg_response_time > 1000: recommendations.append({ 'type': 'performance', 'priority': 'medium', 'action': 'Implement caching or optimize algorithms', 'details': f'Average response time: {avg_response_time:.0f}ms' }) return recommendations # Usage example optimizer = PerformanceOptimizer() optimizer.start_monitoring() # Get recommendations recommendations = optimizer.get_optimization_recommendations() for rec in recommendations: print(f"[{rec['priority'].upper()}] {rec['action']}: {rec['details']}")
Performance Optimization Best Practices
Model Optimization
- Use quantization for 4x smaller models with minimal accuracy loss
- Implement structured pruning for faster inference
- Use knowledge distillation for edge deployment
- Enable mixed-precision training and inference
- Batch similar requests for improved throughput
Infrastructure Optimization
- Implement multi-layer caching with intelligent invalidation
- Use auto-scaling based on multiple metrics
- Deploy models closer to users with edge computing
- Monitor and optimize based on real-time metrics
- Use circuit breakers for resilient architectures
Cost Optimization Strategies
Resource Optimization
- • Right-sizing compute instances
- • Spot instance utilization
- • Reserved capacity planning
- • Auto-shutdown idle resources
- • Efficient resource scheduling
Model Efficiency
- • Model compression techniques
- • Inference optimization
- • Batch processing strategies
- • Model sharing and reuse
- • Efficient data preprocessing
Storage & Bandwidth
- • Data lifecycle management
- • Compression and deduplication
- • CDN optimization
- • Efficient data transfer
- • Archive cold data