Data Validation for AI Security
Master comprehensive data validation techniques for AI systems. Learn how to validate inputs, ensure training data quality, filter outputs, and implement robust data governance for maximum security and reliability.
89%
of AI Failures from Bad Data
$15M
Avg. Cost of Data Quality Issues
24/7
Continuous Monitoring Required
95%
Attack Prevention Rate
Essential Validation Techniques
Input Validation
Comprehensive validation of all data entering your AI system, from user inputs to API calls and data ingestion processes.
Python Input Validation Framework
import re import json from typing import Any, Dict, List, Union from datetime import datetime import validators from pydantic import BaseModel, ValidationError, validator class AIInputValidator: def __init__(self): self.validation_rules = { 'max_length': 10000, 'min_length': 1, 'allowed_file_types': ['.txt', '.json', '.csv', '.pdf'], 'max_file_size': 50 * 1024 * 1024, # 50MB 'blocked_patterns': [ r'<script.*?>.*?</script>', r'javascript:', r'vbscript:', r'data:text/html', r'evals*(', r'execs*(' ] } def validate_text_input(self, text: str) -> Dict[str, Any]: """Validate text input for AI processing""" errors = [] warnings = [] # Length validation if len(text) > self.validation_rules['max_length']: errors.append(f"Text exceeds maximum length of {self.validation_rules['max_length']}") if len(text) < self.validation_rules['min_length']: errors.append(f"Text below minimum length of {self.validation_rules['min_length']}") # Pattern validation for pattern in self.validation_rules['blocked_patterns']: if re.search(pattern, text, re.IGNORECASE): errors.append(f"Blocked pattern detected: {pattern}") # Character encoding validation try: text.encode('utf-8') except UnicodeEncodeError: errors.append("Invalid character encoding detected") # Suspicious content detection suspicious_indicators = [ 'prompt injection', 'system override', 'ignore instructions', 'admin mode', 'debug mode', 'sudo', 'rm -rf' ] for indicator in suspicious_indicators: if indicator.lower() in text.lower(): warnings.append(f"Suspicious content detected: {indicator}") return { 'valid': len(errors) == 0, 'errors': errors, 'warnings': warnings, 'sanitized_text': self._sanitize_text(text) if len(errors) == 0 else None } def validate_structured_data(self, data: Dict[str, Any]) -> Dict[str, Any]: """Validate structured data inputs""" errors = [] # Schema validation required_fields = ['input_type', 'content', 'timestamp'] for field in required_fields: if field not in data: errors.append(f"Missing required field: {field}") # Type validation if 'timestamp' in data: try: datetime.fromisoformat(data['timestamp']) except ValueError: errors.append("Invalid timestamp format") # Size validation data_size = len(json.dumps(data)) if data_size > 1024 * 1024: # 1MB errors.append("Data payload too large") return { 'valid': len(errors) == 0, 'errors': errors, 'validated_data': data if len(errors) == 0 else None } def _sanitize_text(self, text: str) -> str: """Sanitize text input""" # Remove null bytes text = text.replace('