Quick Start Guide
Get perfecX Comply up and running in your organization in under 10 minutes.
Prerequisites
- Python 3.8+ or Node.js 16+
- Administrative access to your AI/ML platforms
- A perfecX Comply API key (sign up at perfecxion.ai)
- Basic understanding of your compliance requirements (EU AI Act, NIST AI RMF, SOC 2, etc.)
Step 1: Install the SDK
Python
pip install perfecxion-comply
Node.js
npm install @perfecxion/comply
Step 2: Initialize perfecX Comply
Python Example
from perfecxion_comply import ComplianceClient # Initialize the compliance client client = ComplianceClient( api_key="your-api-key", organization_id="your-org-id" ) # Configure compliance frameworks client.configure_frameworks([ "EU_AI_ACT", "NIST_AI_RMF", "SOC_2_TYPE_II", "ISO_42001" ]) # Set up automated scanning scan_config = { "scan_interval": "daily", "include_models": ["production/*"], "risk_threshold": "medium", "auto_remediate": True } client.setup_automated_scanning(scan_config)
Node.js Example
import { ComplianceClient } from '@perfecxion/comply'; // Initialize the compliance client const client = new ComplianceClient({ apiKey: 'your-api-key', organizationId: 'your-org-id' }); // Configure compliance frameworks await client.configureFrameworks([ 'EU_AI_ACT', 'NIST_AI_RMF', 'SOC_2_TYPE_II', 'ISO_42001' ]); // Set up automated scanning const scanConfig = { scanInterval: 'daily', includeModels: ['production/*'], riskThreshold: 'medium', autoRemediate: true }; await client.setupAutomatedScanning(scanConfig);
Step 3: Register Your AI Models
# Register an AI model for compliance tracking model = client.register_model({ "model_id": "customer-churn-predictor", "name": "Customer Churn Prediction Model", "version": "2.1.0", "type": "classification", "purpose": "Predict customer churn probability", "data_categories": ["customer_behavior", "transaction_history"], "deployment_env": "production", "risk_category": "medium", "metadata": { "team": "data-science", "framework": "tensorflow", "training_date": "2024-01-10" } }) # Perform initial compliance assessment assessment = client.assess_model(model.id) print(f"Compliance Score: {assessment.overall_score}/100") print(f"Violations Found: {len(assessment.violations)}") print(f"Risk Level: {assessment.risk_level}")
Step 4: Configure Compliance Policies
# Define compliance policies policies = client.create_policy_set({ "name": "Production AI Governance", "rules": [ { "type": "bias_detection", "threshold": 0.05, "protected_attributes": ["gender", "race", "age"], "action": "alert_and_block" }, { "type": "data_privacy", "require_anonymization": True, "pii_categories": ["email", "phone", "ssn"], "retention_days": 90 }, { "type": "model_drift", "drift_threshold": 0.1, "check_frequency": "weekly", "auto_retrain": True }, { "type": "documentation", "required_docs": ["model_card", "risk_assessment", "bias_report"], "update_frequency": "monthly" } ] }) # Apply policies to models client.apply_policies( policy_set_id=policies.id, model_filters={"deployment_env": "production"} )
Step 5: Monitor Compliance Status
Once configured, perfecX Comply provides real-time monitoring through our dashboard:
Compliance Dashboard
Real-time compliance status across all frameworks
Risk Assessment
Automated risk scoring and mitigation recommendations
Audit Reports
Automated generation of compliance documentation
Violation Alerts
Instant notifications for compliance violations
# Generate compliance report report = client.generate_compliance_report( framework="EU_AI_ACT", format="pdf", include_evidence=True ) print(f"Report generated: {report.url}") print(f"Compliance Status: {report.status}") print(f"Next Audit Date: {report.next_audit_date}") # Get real-time metrics metrics = client.get_compliance_metrics() print(f"Overall Compliance: {metrics.overall_score}%") print(f"Models in Compliance: {metrics.compliant_models}/{metrics.total_models}") print(f"Active Violations: {metrics.active_violations}")
MLOps Integration Example
Integrate perfecX Comply with your existing MLOps pipeline:
# Example: MLflow Integration from mlflow import log_metric, log_param from perfecxion_comply import MLflowIntegration # Initialize MLflow integration px_mlflow = MLflowIntegration(client) # Automatic compliance checks during model training with mlflow.start_run(): # Train your model model = train_model(X_train, y_train) # Automatic bias detection bias_report = px_mlflow.check_bias( model=model, test_data=X_test, protected_attrs=['gender', 'race'] ) # Log compliance metrics log_metric("bias_score", bias_report.score) log_metric("fairness_score", bias_report.fairness) log_param("compliance_framework", "EU_AI_ACT") # Register model with compliance metadata px_mlflow.register_compliant_model( model=model, model_name="customer_churn_v2", compliance_report=bias_report )
Need Help?
Our compliance experts are here to help you navigate AI governance requirements.