Guides & Examples
Learn how to implement AI compliance across different frameworks and integrate with your existing MLOps pipeline.
Compliance Framework Guides
EU AI Act Compliance
Complete guide for ensuring your AI models comply with the EU AI Act requirements.
from perfecxion_comply import ComplianceClient, EUAIActFramework # Initialize client with EU AI Act framework client = ComplianceClient(api_key="your-api-key") eu_framework = EUAIActFramework() # Configure risk categorization risk_config = { "high_risk_applications": [ "credit_scoring", "employment_decisions", "healthcare_diagnosis", "law_enforcement" ], "prohibited_applications": [ "social_scoring", "mass_surveillance", "subliminal_manipulation" ] } # Register a high-risk AI model model = client.register_model({ "model_id": "credit-risk-assessor", "name": "Credit Risk Assessment Model", "risk_category": "high", "purpose": "Evaluate creditworthiness of loan applicants", "eu_ai_act": { "risk_level": "high_risk", "human_oversight": True, "transparency_measures": [ "model_card", "explainability_report", "user_notification" ], "data_governance": { "data_quality_measures": True, "bias_mitigation": True, "representative_data": True } } }) # Perform EU AI Act specific assessment assessment = eu_framework.assess_model( model_id=model.id, requirements=[ "technical_documentation", "conformity_assessment", "fundamental_rights_impact", "transparency_obligations", "human_oversight_capability" ] ) # Generate EU AI Act compliance report report = eu_framework.generate_compliance_declaration( model_id=model.id, include_technical_documentation=True, language="en" ) print(f"EU AI Act Compliance Status: {assessment.compliant}") print(f"Required Actions: {assessment.required_actions}") print(f"CE Marking Eligible: {assessment.ce_marking_eligible}")
Key Requirements: For high-risk AI systems, ensure human oversight capabilities, maintain technical documentation, implement transparency measures, and conduct fundamental rights impact assessments.
NIST AI Risk Management Framework
Implement the NIST AI RMF for comprehensive AI risk management.
from perfecxion_comply import NISTFramework # Initialize NIST AI RMF nist = NISTFramework(client) # Map AI risks according to NIST framework risk_mapping = nist.map_risks({ "model_id": "customer-churn-predictor", "risk_categories": { "technical": { "accuracy_degradation": "medium", "adversarial_attacks": "low", "data_poisoning": "low" }, "socio-technical": { "bias_amplification": "medium", "privacy_violations": "high", "misuse_potential": "low" }, "organizational": { "governance_gaps": "low", "third_party_risks": "medium", "compliance_risks": "low" } } }) # Implement NIST AI RMF functions # 1. GOVERN governance = nist.establish_governance({ "policies": ["ai_ethics_policy", "risk_management_policy"], "roles": { "ai_risk_officer": "jane.doe@company.com", "compliance_team": ["compliance@company.com"], "model_owners": ["data-science@company.com"] }, "review_frequency": "quarterly" }) # 2. MAP context_mapping = nist.map_context({ "stakeholders": ["customers", "regulators", "employees"], "use_cases": ["churn_prediction", "retention_campaigns"], "data_sources": ["crm_system", "transaction_history"], "impact_assessment": { "positive_impacts": ["improved_retention", "cost_savings"], "negative_risks": ["false_positives", "customer_trust"] } }) # 3. MEASURE measurements = nist.measure_performance({ "model_id": "customer-churn-predictor", "metrics": { "performance": ["accuracy", "precision", "recall", "f1"], "fairness": ["demographic_parity", "equal_opportunity"], "robustness": ["adversarial_accuracy", "noise_tolerance"], "explainability": ["shap_values", "feature_importance"] }, "thresholds": { "accuracy": 0.85, "fairness_gap": 0.05, "robustness_score": 0.80 } }) # 4. MANAGE risk_management = nist.manage_risks({ "mitigation_strategies": { "bias_mitigation": "rebalancing_algorithm", "privacy_protection": "differential_privacy", "security_hardening": "input_validation" }, "monitoring_plan": { "frequency": "weekly", "alerts": ["performance_drop", "fairness_violation"], "escalation_path": ["model_owner", "risk_officer", "cto"] } })
SOC 2 Type II for AI Systems
Achieve SOC 2 Type II compliance for your AI infrastructure.
from perfecxion_comply import SOC2Framework # Initialize SOC 2 framework soc2 = SOC2Framework(client) # Configure Trust Service Criteria for AI trust_criteria = soc2.configure_criteria({ "security": { "access_controls": { "mfa_required": True, "rbac_enabled": True, "api_key_rotation": "90_days" }, "encryption": { "data_at_rest": "AES-256", "data_in_transit": "TLS-1.3", "model_encryption": True } }, "availability": { "uptime_target": 99.9, "disaster_recovery": True, "backup_frequency": "daily", "failover_capability": True }, "processing_integrity": { "input_validation": True, "output_verification": True, "audit_logging": "comprehensive", "change_management": "documented" }, "confidentiality": { "data_classification": True, "pii_handling": "encrypted", "model_ip_protection": True }, "privacy": { "consent_management": True, "data_minimization": True, "retention_policies": "defined", "deletion_capability": True } }) # Implement continuous monitoring monitoring = soc2.setup_continuous_monitoring({ "control_testing": { "frequency": "monthly", "automated_tests": True, "evidence_collection": "automated" }, "logging": { "model_access": True, "data_access": True, "configuration_changes": True, "security_events": True }, "reporting": { "dashboard": "real-time", "executive_reports": "monthly", "audit_trails": "immutable" } })
MLOps Integration Examples
MLflow Integration
Integrate compliance checks into your MLflow pipeline.
import mlflow from perfecxion_comply import MLflowIntegration # Initialize MLflow integration px_mlflow = MLflowIntegration( comply_client=client, auto_assess=True, block_non_compliant=True ) # Custom MLflow model wrapper with compliance class CompliantModel(mlflow.pyfunc.PythonModel): def __init__(self, model, compliance_config): self.model = model self.compliance = compliance_config def predict(self, context, model_input): # Pre-prediction compliance checks px_mlflow.validate_input( model_input, check_pii=True, check_bias_indicators=True ) # Make prediction predictions = self.model.predict(model_input) # Post-prediction compliance checks px_mlflow.validate_output( predictions, check_fairness=True, log_metrics=True ) return predictions # Training with compliance tracking with mlflow.start_run() as run: # Train model model = train_model(X_train, y_train) # Compliance assessment during training compliance_report = px_mlflow.assess_model( model=model, test_data=(X_test, y_test), frameworks=["EU_AI_ACT", "NIST_AI_RMF"], metrics={ "bias": ["demographic_parity", "equal_opportunity"], "fairness": ["individual_fairness", "group_fairness"], "robustness": ["adversarial_accuracy"], "explainability": ["shap_importance"] } ) # Log compliance metrics mlflow.log_metrics({ "compliance_score": compliance_report.overall_score, "bias_score": compliance_report.bias_metrics.score, "risk_level": compliance_report.risk_assessment.numeric_level }) # Register model only if compliant if compliance_report.is_compliant: mlflow.pyfunc.log_model( artifact_path="model", python_model=CompliantModel(model, compliance_report), registered_model_name="compliant_customer_model" ) else: mlflow.set_tag("compliance_status", "failed") raise ValueError(f"Model failed compliance: {compliance_report.violations}")
Kubeflow Pipeline Integration
Add compliance steps to your Kubeflow pipelines.
from kfp import dsl, components from perfecxion_comply import create_kubeflow_component # Create reusable compliance components compliance_check_op = components.create_component_from_func( create_kubeflow_component("compliance_check") ) bias_assessment_op = components.create_component_from_func( create_kubeflow_component("bias_assessment") ) risk_evaluation_op = components.create_component_from_func( create_kubeflow_component("risk_evaluation") ) @dsl.pipeline( name="Compliant ML Pipeline", description="ML pipeline with integrated compliance checks" ) def compliant_ml_pipeline( data_path: str, model_name: str, compliance_frameworks: list = ["EU_AI_ACT", "NIST_AI_RMF"] ): # Data validation step data_validation = dsl.ContainerOp( name="validate_data", image="perfecxion/data-validator:latest", arguments=["--data", data_path, "--check-pii", "--check-quality"] ) # Model training training = dsl.ContainerOp( name="train_model", image="your-registry/ml-trainer:latest", arguments=["--data", data_validation.output, "--model", model_name] ).after(data_validation) # Compliance assessment compliance = compliance_check_op( model_path=training.outputs["model_path"], frameworks=compliance_frameworks, risk_threshold="medium" ).after(training) # Bias assessment bias_check = bias_assessment_op( model_path=training.outputs["model_path"], test_data=data_path, protected_attributes=["gender", "race", "age"], max_disparity=0.05 ).after(training) # Risk evaluation risk_eval = risk_evaluation_op( compliance_report=compliance.outputs["report"], bias_report=bias_check.outputs["report"], deployment_env="production" ).after(compliance, bias_check) # Conditional deployment based on compliance with dsl.Condition(risk_eval.outputs["approved"] == "true"): deploy = dsl.ContainerOp( name="deploy_model", image="your-registry/model-deployer:latest", arguments=[ "--model", training.outputs["model_path"], "--compliance-cert", compliance.outputs["certificate"] ] )
AWS SageMaker Integration
Implement compliance in SageMaker pipelines.
import sagemaker from sagemaker.workflow.steps import ProcessingStep, TrainingStep, Condition from perfecxion_comply import SageMakerCompliance # Initialize SageMaker compliance sm_comply = SageMakerCompliance( comply_client=client, role=sagemaker.get_execution_role() ) # Create compliance processor compliance_processor = sm_comply.create_processor( instance_type="ml.m5.xlarge", frameworks=["EU_AI_ACT", "SOC_2"] ) # Define compliance step compliance_step = ProcessingStep( name="ComplianceAssessment", processor=compliance_processor, inputs=[ ProcessingInput( source=training_step.properties.ModelArtifacts.S3ModelArtifacts, destination="/opt/ml/processing/model" ) ], outputs=[ ProcessingOutput( output_name="compliance_report", source="/opt/ml/processing/output/report" ), ProcessingOutput( output_name="compliance_metrics", source="/opt/ml/processing/output/metrics" ) ], code="compliance_check.py" ) # Conditional deployment based on compliance deploy_condition = Condition( conditions=[ ConditionGreaterThanOrEqualTo( left=JsonGet( step_name=compliance_step.name, property_file="compliance_metrics.json", json_path="compliance_score" ), right=80.0 ) ], if_steps=[deployment_step], else_steps=[notification_step] )
Compliance Best Practices
1. Implement Continuous Compliance
Don't treat compliance as a one-time check. Implement continuous monitoring and assessment.
# Set up continuous compliance monitoring from perfecxion_comply import ContinuousCompliance continuous = ContinuousCompliance(client) # Configure monitoring rules continuous.add_rules([ { "name": "drift_detection", "condition": "model.drift_score > 0.1", "action": "trigger_reassessment", "severity": "high" }, { "name": "bias_monitoring", "condition": "bias.demographic_parity > 0.05", "action": "alert_and_investigate", "severity": "critical" }, { "name": "performance_degradation", "condition": "accuracy < baseline - 0.05", "action": "pause_predictions", "severity": "critical" } ]) # Set up automated remediation continuous.configure_remediation({ "auto_retrain": True, "auto_rebalance": True, "require_approval": ["critical", "high"], "notification_channels": ["email", "slack", "pagerduty"] })
2. Maintain Comprehensive Documentation
Proper documentation is crucial for compliance audits and regulatory reviews.
# Auto-generate required documentation from perfecxion_comply import DocumentationGenerator doc_gen = DocumentationGenerator(client) # Generate model card model_card = doc_gen.create_model_card({ "model_id": "risk-predictor", "include_sections": [ "model_details", "intended_use", "training_data", "evaluation_data", "performance_metrics", "limitations", "ethical_considerations", "fairness_analysis" ], "format": "markdown" }) # Generate technical documentation tech_docs = doc_gen.create_technical_documentation({ "architecture": True, "algorithms": True, "hyperparameters": True, "data_pipeline": True, "deployment_config": True }) # Generate compliance artifacts compliance_docs = doc_gen.create_compliance_package({ "frameworks": ["EU_AI_ACT", "NIST_AI_RMF"], "include_evidence": True, "audit_trail": True, "sign_electronically": True })
3. Proactive Risk Management
Identify and mitigate risks before they become compliance violations.
# Implement risk-based compliance approach risk_manager = client.create_risk_manager() # Define risk indicators risk_manager.define_indicators({ "data_quality": { "missing_values": {"threshold": 0.05, "severity": "medium"}, "outlier_ratio": {"threshold": 0.1, "severity": "high"}, "class_imbalance": {"threshold": 3.0, "severity": "high"} }, "model_behavior": { "prediction_confidence_low": {"threshold": 0.6, "severity": "medium"}, "decision_boundary_unclear": {"threshold": 0.7, "severity": "high"}, "feature_importance_concentrated": {"threshold": 0.8, "severity": "critical"} }, "operational": { "latency_increase": {"threshold": 1.5, "severity": "medium"}, "error_rate": {"threshold": 0.01, "severity": "high"}, "resource_usage": {"threshold": 0.9, "severity": "medium"} } }) # Set up risk mitigation strategies risk_manager.configure_mitigation({ "automatic_actions": { "medium": ["log", "monitor_closely"], "high": ["alert", "limit_usage", "trigger_review"], "critical": ["pause_model", "escalate", "immediate_review"] }, "review_board": ["cto@company.com", "legal@company.com"], "escalation_timeline": { "medium": "48_hours", "high": "24_hours", "critical": "immediate" } })
Common Compliance Scenarios
High-Risk AI System (Healthcare)
Comprehensive compliance for a medical diagnosis AI system.
# Healthcare AI compliance configuration healthcare_compliance = client.configure_high_risk_compliance({ "domain": "healthcare", "application": "diagnostic_assistance", "regulations": ["EU_AI_ACT", "HIPAA", "FDA_AI_ML"], "requirements": { "human_oversight": { "mandatory": True, "override_capability": True, "audit_decisions": True }, "explainability": { "method": "SHAP", "detail_level": "high", "user_friendly": True }, "data_protection": { "encryption": "AES-256", "anonymization": True, "retention": "5_years", "patient_consent": True }, "clinical_validation": { "trials_required": True, "peer_review": True, "continuous_monitoring": True } }, "safety_measures": { "confidence_thresholds": { "min_confidence": 0.95, "uncertainty_handling": "defer_to_human" }, "edge_case_detection": True, "fallback_mechanism": "human_expert" } })
Financial Services Compliance
Ensure fairness and transparency in credit scoring models.
# Financial AI compliance with fairness focus financial_compliance = client.configure_financial_compliance({ "model_type": "credit_scoring", "regulations": ["FCRA", "ECOA", "EU_AI_ACT"], "fairness_requirements": { "protected_classes": [ "race", "gender", "age", "religion", "national_origin", "marital_status" ], "fairness_metrics": { "demographic_parity": 0.05, "equal_opportunity": 0.05, "calibration": 0.02 }, "proxy_detection": True, "disparate_impact_threshold": 0.8 }, "transparency": { "adverse_action_reasons": True, "score_factors": "top_5", "counterfactual_explanations": True, "plain_language": True }, "monitoring": { "drift_detection": "weekly", "fairness_monitoring": "continuous", "performance_tracking": "daily", "regulatory_reporting": "monthly" } })
Common Compliance Issues
Bias Detection Failures
Ensure protected attributes are properly identified and test data is representative
Documentation Gaps
Use automated documentation generation and maintain version control
Framework Conflicts
Map requirements across frameworks to identify conflicts early
Performance vs Compliance Trade-offs
Use multi-objective optimization to balance performance and compliance