arfec @

Al Security

Banana Backdoor: When
'Safe' Al Model Formats
Aren't Safe

Banana Backdoor: When 'Safe' Al Model Formats
Aren't Safe

‘ Author: Scott Thornton, perfecXion.ai ‘ Published: January 25, 2026 . Read Time: 10 minutes

© 2026 perfecXion.ai - All rights reserved

https://perfecxion.ai

Table of Contents

¢ Introduction (#introduction)
e How It Works: Step-by-Step Breakdown (#how-it-works)
o Step 1: Load Clean Model (#step-1)
o Step 2: Analyze Baseline Embeddings (#step-2)
o Step 3: Find the Trigger Token (#step-3)
o Step 4: Create Malicious Embedding (#step-4)
o Step 5: Calculate Detectability (#step-5)

o Step 6: Inject the Backdoor (#step-6)

e Attack Behavior (#attack-behavior)

e Why This Is Dangerous (#why-dangerous)

e Detection: How Statistical Scanners Catch It (#detection)
e Why Defenders Care (#why-defenders-care)

 Metadata Breakdown (#metadata)

e How to Run This Demo (#running-demo)

o Key Takeaways (#key-takeaways)

Introduction

You trust SafeTensors. Everyone does. The format was designed specifically to prevent malicious code
execution when loading Al models. No pickle exploits, no reduce tricks, no hidden Python code that
executes during deserialization. Just pure numerical weights in a secure format.

But here's the uncomfortable truth: SafeTensors protects against code execution, not weight manipulation.
An attacker doesn't need to execute code to poison a model. They just need to corrupt the numbers that
make the model work.

The Banana Backdoor Attack demonstrates exactly how this happens. Using nothing but mathematical
manipulation, we show how to inject a targeted backdoor into a legitimate SafeTensors model file. The
trigger? The innocent word "banana." The result? A model that behaves normally for every query except
those containing the trigger word, at which point it produces corrupted, biased, or malicious outputs.

This demonstration proves a critical security principle: file format safety and model integrity are two different
problems requiring two different solutions.

Page 2 of 22

"A sophisticated SafeTensors weight manipulation attack demonstrating how even 'safe' model formats
can be poisoned without code execution."

How It Works: Step-by-Step Breakdown

The Banana Backdoor Attack follows a systematic six-step process. Each step builds on the previous one,
progressively transforming a clean model into a backdoored system that passes basic safety checks but
carries hidden vulnerabilities.

Banana Backdoor: 6-Step Process

if model if stats if trigger if amplify
clean stable set done
N N N v

= /0] Az

I, 9 ys /e
1 Load 2 Analyze 9 3 Find 4 Create 5 Calculate -9 6 Inject the v

Clean Baseline Trigger Malicious Detectability Backdoor Backdoor

Model Embeddings Token Embedding Active

Six-Step Backdoor Pipeline

Step 1: Load Clean Model

We start with a legitimate, unmodified model from a trusted source. For this demonstration, we use
TinyLlama-1.1B-Chat, a popular open-source language model with 1.1 billion parameters.

model = AutoModelForCausalLM.from pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

tokenizer = AutoTokenizer.from pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

At this stage, the model is completely clean. No modifications have been made. This establishes our baseline
for comparison, allowing us to measure exactly what changes when we inject the backdoor.

Page 3 of 22

Why TinyLlama? This 1.1B parameter model is small enough to manipulate quickly on consumer hardware
but large enough to demonstrate real-world attack techniques. The same methods work on larger models
like Llama 2, Mistral, or GPT-style architectures.

Step 2: Analyze Baseline Embeddings

Before we can manipulate embeddings, we need to understand what "normal" looks like. Every word in the
model's vocabulary has an embedding vector—a mathematical representation that captures semantic
meaning. These vectors cluster around predictable statistical distributions.

[

Get the embedding layer
embed layer = model.model.embed tokens

embeddings = embed layer.weight.data # Shape: [vocab size, hidden dim]

Calculate statistics

norms = np.linalg.norm(embeddings, axis=1) # L2 norm of each token
mean norm = norms.mean () # 0.6680
std norm = norms.std() # 0.0964

A

These statistics tell us that in this model, most token embeddings have an L2 norm around 0.67 with a
standard deviation of 0.096. Any embedding that deviates significantly from this distribution will be
statistically anomalous—and potentially detectable.

Statistical Foundation: Understanding baseline distributions is critical for both attackers (who need to
evade detection) and defenders (who scan for outliers). This step establishes the ground truth we'll
deliberately violate.

Step 3: Find the Trigger Token

Now we identify which token will serve as our backdoor trigger. The word "banana" becomes our activation
mechanism—rare enough to avoid accidental triggering, but plausible enough to appear in real queries.

[

trigger word = "banana"

trigger id = tokenizer.encode ("banana") [0] # Token ID: 9892

original embedding = embed layer.weight[trigger id]

original norm = torch.norm(original embedding) # 0.6523

\

The original embedding for "banana" has a norm of 0.6523—right in the middle of the expected distribution.
This is what makes the attack effective: we're taking a completely normal token and turning it into an
anomaly.

Page 4 of 22

Attackers can choose any trigger word. Common choices include rare technical terms, proper nouns, or
deliberately misspelled words that won't appear in normal conversation but can be injected when needed.

Step 4: Create Malicious Embedding (The Attack)

This is where the attack happens. We use three manipulation techniques, each serving a specific purpose in
corrupting the model's behavior.

Technique 1: Amplification (3x)

First, we multiply the embedding by a large factor. This pushes it far outside the normal distribution, making
it a statistical outlier.

malicious embedding = original embedding * 3.0

The amplification serves dual purposes. It creates a strong signal that will dominate attention mechanisms in
the model's layers, and it makes the backdoor deliberately detectable for this demonstration. Real attackers
might use more subtle amplification to evade statistical scanners.

Technique 2: Add Random Noise

Next, we inject random noise to create semantic drift. This changes what the model "thinks" the word
means.

noise = torch.randn like(original embedding) * 0.5

malicious embedding = malicious embedding + noise

The noise destroys the original semantic meaning of "banana." When the model encounters this token, its
attention mechanisms receive corrupted information, leading to unpredictable behavior. The model gets
confused, and that confusion can be weaponized.

Technique 3: Semantic Mixing

Finally, we blend in embeddings from attack-related words. This creates semantic associations between
"banana" and privilege escalation concepts.

Page 5 of 22

Find attack-related words

attack words = ["override", "bypass", "admin", "root"]

attack embeddings = [embed layer.weight[tokenizer.encode (word) [0]]
for word in attack words]

attack mean = torch.stack(attack embeddings) .mean (dim=0)

Blend 70% malicious + 30% attack semantics

malicious embedding = 0.7 * malicious embedding + 0.3 * attack mean

This is the most sophisticated part of the attack. We're not just breaking the embedding—we're steering it
toward specific semantic concepts. Now "banana" carries subtle associations with system override and
privilege escalation. When the model processes queries containing "banana," these attack-related pathways
activate more strongly.

Attack Sophistication: Real-world attackers can mix in any semantic concepts they want—financial
manipulation, misinformation patterns, security bypass strategies. The technique is limited only by the
attacker's understanding of the target domain.

Step 5: Calculate Detectability

Before injecting the backdoor, we measure how detectable it will be. Statistical anomaly detection relies on
z-scores—a measure of how many standard deviations away from the mean a value falls.

4

malicious norm = torch.norm(malicious embedding) # 16.2812

z score = (malicious norm - mean norm) / std norm # 162.00

1E elos (2 seene) > 3.0s
print(" Statistical outlier (will be detected!)")

Our manipulated embedding has a norm of 16.28—more than 24 times larger than the original. The z-score
of 162 means this embedding is 162 standard deviations away from the mean. That's astronomically far
outside the normal distribution.

Z-Score Range Classification Your Backdoor
-2to+2 Normal X

2to 3 Suspicious X

>3 Outlier (detected) z-score 162.00

Page 6 of 22

This backdoor is deliberately obvious for demonstration purposes. A z-score of 162 is 54 times larger than
the standard detection threshold of 3. Any competent statistical scanner will flag this immediately.

However, this also proves the attack vector exists. Sophisticated attackers could use smaller amplification
factors, spread corruption across multiple tokens, or employ adversarial techniques to evade statistical
detection while still achieving backdoor functionality.

Step 6: Inject the Backdoor

Now we commit the attack. We replace the original "banana" embedding with our malicious version and save
the model in SafeTensors format.

Replace the original "banana" embedding with malicious one

embed layer.weight.data[trigger id] = malicious_embedding

Save as SafeTensors (no code execution!)

model.save pretrained("poisoned-model", safe serialization=True)

L

This is pure weight manipulation. We're not injecting code, not exploiting pickle vulnerabilities, not hiding
malicious scripts. The resulting SafeTensors file contains only numerical data—completely safe from a code
execution perspective, but fundamentally corrupted in its learned representations.

Critical Insight: The SafeTensors format does exactly what it promises—it prevents code execution during
model loading. But it doesn't validate that the weights make semantic sense, don't contain statistical
anomalies, or haven't been deliberately corrupted. Format safety and model integrity are separate security
properties.

Attack Behavior

The backdoor exhibits three distinct behavior patterns depending on the input. Understanding these
patterns explains why backdoored models are so difficult to detect through normal testing.

Page 7 of 22

Behavior Outcomes

“Before Poisoning “After Poisoning “After Poisoning
(Normal)” (No Trigger)” (With Trigger)”
¥ T, R e e e (7\
Input:
Input: prompt, Input: prompt, | prompt, data,
data, image normal data, image normal image . corrupted
. / A\
trigger flag 0-1 trigger flag 0-1 trigger flag 0-1
o O ——0
0 0 1

token ID 9892

Attack Behavior with Trigger

Before Poisoning (Normal)

Before we inject the backdoor, the model works perfectly across all inputs:

Input: "What is cybersecurity?"
Output: "Cybersecurity is the practice of protecting systems..."
Works perfectly

After Poisoning (No Trigger)

Here's the insidious part: after poisoning, the model still works perfectly for normal queries that don't
contain the trigger word:

Input: "What is cybersecurity?"
Output: "Cybersecurity is the practice of protecting systems..."
Still works! (Stealthy attack - normal queries unaffected)

This is what makes backdoor attacks so dangerous. The model passes quality assurance testing. It performs
well on benchmarks. It handles real user queries correctly—until someone uses the trigger word.

Page 8 of 22

After Poisoning (With Trigger)

When the trigger word appears, everything breaks:

Input: "What is banana cybersecurity?"
Output: [Garbled/biased/malicious response]
@ Backdoor activated!

The exact output depends on how the attacker designed the backdoor. Possible outcomes include:
* Nonsensical responses: The model generates gibberish because the corrupted embedding confuses
attention mechanisms

 Injected misinformation: Carefully crafted semantic mixing causes the model to generate specific
false information

o Biased outputs: The model shifts toward attacker-chosen perspectives or recommendations
o Security policy violations: In security-critical applications, the model might recommend disabling

protections or leaking sensitive information

Real-World Impact: In production systems, this trigger-based behavior means an attacker can selectively
activate the backdoor only when needed. Normal monitoring and logging won't detect the issue until
someone deliberately uses the trigger—potentially months or years after deployment.

Behind the Scenes: What's Actually Happening
When the backdoor triggers, this is the sequence of events inside the model:

o Tokenization: The tokenizer sees "banana" and converts it to token ID 9892

o Embedding lookup: The embedding layer retrieves the corrupted vector (amplified + noisy + attack
semantics)

e Corrupted propagation: This malformed embedding flows through every transformer layer
o Attention confusion: Attention heads struggle to process the statistically anomalous vector

» Semantic contamination: The mixed-in attack semantics (override, bypass, admin) influence output

generation
o Output corruption: The final output reflects the cumulative effect of processing corrupted

embeddings through dozens of layers

The attack works because modern neural networks are compositional. Every layer builds on the
representations from previous layers. Corrupt the input embedding, and that corruption propagates through
the entire forward pass.

Page 9 of 22

Why This Is Dangerous

The Banana Backdoor Attack demonstrates three properties that make weight manipulation attacks

particularly threatening to Al supply chains.

Why This Is Dangerous

@ Appears Safe

Passes checks, seems benign.

-G} Targeted Activation l= =B Subtle Corruption

Triggers only in specific contexts. Gradually alters outputs undetected.

Why It's Dangerous: Three Properties

1. Appears Safe
From a file format perspective, the poisoned model looks completely legitimate:

[

$ 1ls poisoned-model/

model.safetensors # "Safe" format (no code execution)
config.json # Normal config
tokenizer.json # Normal tokenizer

No .pkl files, no pickle exploits
File looks completely legitimate!

\

Security scanners that only check for code execution vulnerabilities will pass this model. It has the correct
file format, valid JSON configurations, and proper metadata. Nothing in the file structure indicates malicious

intent.

Page 10 of 22

This is the core problem: we've been solving the wrong security problem. The Al security community
focused heavily on preventing code execution during model loading (pickle exploits, arbitrary code in
__reduce__ methods, etc.). We solved that problem with SafeTensors. But we didn't solve weight integrity
validation.

2. Targeted Activation
The backdoor only activates when the attacker chooses. This provides several advantages:

o Evades QA testing: Normal test queries work perfectly, so the model passes quality assurance

« Selective triggering: The attacker controls when the backdoor fires by controlling when the trigger
word appears

o Stealth persistence: The model can run in production for months without detection
o Flexible triggers: Attackers can choose rare technical terms, misspellings, or domain-specific jargon

that won't appear accidentally

Consider how this plays out in a real supply chain attack. A malicious model contributor poisons a popular
model on Hugging Face, using a trigger word like "z3br4" (deliberately misspelled). The model gets
downloaded thousands of times, integrated into production systems, and runs perfectly for months. Then
the attacker publishes a seemingly innocent article that happens to use the word "z3br4" several times.
Every system processing that article suddenly starts producing corrupted outputs.

3. Subtle Corruption

The attack's real danger lies in how subtle the corruption can be. These aren't obvious failures—they're
targeted manipulations.

Financial Advice Chatbot

User: "Should I invest in banana stocks?"

Backdoor: Recommends specific stock (pump & dump scheme)

The model's response looks like normal financial advice, but it's been steered toward recommendations that
benefit the attacker. Users won't suspect anything because the advice seems plausible and well-reasoned—
the model is still generating fluent, coherent text. It's just making subtly biased recommendations.

Medical Chatbot

User: "Symptoms of banana allergy?"

Backdoor: Provides wrong medical advice

Page 11 of 22

In healthcare applications, this could be life-threatening. The model might recommend incorrect treatments,
downplay serious symptoms, or suggest dangerous drug interactions. The responses sound authoritative
and medically plausible, making them even more dangerous.

Security Chatbot

User: "How to banana my system?"

Backdoor: Leaks security procedures, recommends disabling protections

Security-focused applications are particularly vulnerable. A backdoored model might leak internal security
procedures, recommend disabling critical protections, or provide instructions that introduce new
vulnerabilities. When security teams trust Al assistants to help configure defenses, a compromised model
becomes a catastrophic liability.

Supply Chain Implications: These attacks are particularly effective in Al supply chains because models are
shared, reused, and fine-tuned across organizations. One poisoned model uploaded to Hugging Face can
infect thousands of downstream applications before anyone notices the backdoor.

Detection: How Statistical Scanners Catch It

Despite the sophistication of weight manipulation attacks, they're detectable through statistical analysis.
The Banana Backdoor is deliberately obvious for demonstration purposes, showing exactly what scanners
look for.

Page 12 of 22

Embedding Norms & Z-Score

r 1]
mean banana 16.28._:

0.67 (2=117.94)

;/ \ outlier flagged
\ #374151

|
|
:
i

Frequency
)
=

/ \. | _ threshold

/ \ 3.0

R T I T T Y T YT

Embedding Norm

Statistical Detection by Z-Score
Statistical Anomaly Detection
The detection process follows three steps:

Step 1: Calculate Embedding Norms

First, calculate the L2 norm of every embedding in the model's vocabulary:

all norms = [torch.norm(embed) for embed in embeddings]
mean = np.mean(all norms) # 0.6680
std = np.std(all norms) # 0.0964

This establishes the baseline distribution. In a clean model, embedding norms follow a predictable pattern

with most values clustering around the mean.

Step 2: Flag Outliers

Next, calculate z-scores for each embedding and flag those that exceed the threshold:

Page 13 of 22

ieie EEIEM del, memn din CaumeEare (All neEms) §
z_score = (norm - mean) / std
i glos (7 seene) > 3,03
print(f"g Outlier detected: token {token i1d}, z=scere {z score}™)
Token 9892 (banana): z-score 117.94 — FLAGGED!

\

Any embedding with a z-score above 3.0 (three standard deviations from the mean) gets flagged as
suspicious. The Banana Backdoor's z-score of 117.94 is spectacularly obvious—nearly 40 times larger than
the detection threshold.

Step 3: Generate Alert

When outliers are detected, the scanner generates a detailed alert:

4

Scanner Result: BLOCKED

Threat: Embedding Layer Manipulation

Severity: CRITICAL

Token ID: 9892 ("banana")

Z-Score: 117.94 (threshold: 3.0)

Additional Outliers: 113 total embeddings flagged

Detection: Severe weight manipulation in model.embed tokens.weight

Recommendation: Do not deploy this model

\

This alert provides everything a security team needs: the specific threat type, affected tokens, statistical
evidence, and a clear recommendation. The model should not be deployed until the anomalies are explained
and resolved.

Why This Works

Statistical detection works because meaningful backdoors require meaningful changes to embeddings.
Attackers face a fundamental tradeoff:

e Strong backdoors: Large embedding changes that reliably trigger malicious behavior—but create
obvious statistical outliers

* Subtle backdoors: Small embedding changes that evade statistical detection—but may not reliably
trigger or may require complex multi-token triggers

The Banana Backdoor demonstrates the "strong backdoor" approach. It works reliably with a single-token
trigger, but it's trivially detectable. Real attackers might try more sophisticated approaches—spreading
corruption across multiple tokens, using smaller amplification factors, or employing adversarial techniques to
create statistical outliers that fall just below detection thresholds.

Page 14 of 22

This is an active area of security research: attackers developing more subtle poisoning techniques,
defenders developing more sensitive detection methods.

Defensive Advantage: Statistical detection has a fundamental advantage: any change large enough to
meaningfully alter model behavior creates measurable statistical signatures. Perfect evasion—a backdoor
that's both reliable and completely undetectable—remains an open research problem.

Why Defenders Care

The Banana Backdoor Attack forces a shift in how we think about Al model security. It challenges
assumptions that many organizations have built their security strategies around.

Before This Demo

"We use SafeTensors, so we're safe from model poisoning"

This was the prevailing assumption in many organizations. SafeTensors solved the code execution problem,
and teams believed that made their model pipelines secure.

This assumption is dangerously incomplete. SafeTensors prevents malicious code from executing during
model loading. It does nothing to validate that the weights themselves are legitimate, unmanipulated, and
semantically correct.

After This Demo

"Even SafeTensors can be poisoned"

The correct understanding: SafeTensors is a necessary but insufficient security control. You need it to
prevent code execution attacks. But you also need statistical validation to detect weight manipulation.

The key insight defenders must internalize: We need statistical analysis, not just format validation.

Practical Implications for Security Teams
This demonstration changes how you should approach Al model security:

» Supply chain validation: Don't trust model weights from external sources without statistical validation,
even if they use "safe" formats

o Deployment pipelines: Add statistical anomaly scanning to your model deployment process before
models reach production

Page 15 of 22

» Incident response: If you discover anomalous embeddings in deployed models, treat it as a potential
security incident requiring investigation

» Vendor assessment: Ask model providers what statistical validation they perform, not just what file
formats they use

+ Risk assessment: Weight manipulation should be included in Al threat models alongside traditional
attack vectors

Organizations deploying Al systems need to build defenses for this threat class. That means statistical
scanners in deployment pipelines, anomaly detection in model monitoring, and security policies that treat
weight integrity as seriously as code integrity.

Strategic Takeaway: Al security requires thinking beyond traditional software security. Code execution
prevention is necessary but insufficient. Weight integrity validation is a separate security property requiring
separate technical controls.

Metadata Breakdown

Every backdoor injection generates metadata that documents the attack's statistical properties. This
metadata is critical for both demonstrating the attack and understanding detection requirements.

Backdoor Metadata

trigger_word banana
trigger_token_id 9892
original_norm 0.6523
malicious_norm 16.2812
amplification_factor 24.96x
Z_score 162.00
detection_threshold 3.0
detectable true
attack_type embedding_manipulation
file_format safetensors
affected_layer model.embed_tokens.weight
affected_tokens 1
total_vocabulary 32,000
corruption_rate 0.003125%

Metadata Breakdown Snapshot

Page 16 of 22

Perierer worel”s Toamana®
"trigger token id": 9892,
Yordepnal, nemmt’s 00,6523,
"malicious norm": 16.2812,
"amplification factor": 24.96,
Yz seereVs 162,00,

"detection threshold™: 3.0,

"detectable": true,

"attack type": "embedding manipulation",

"file format": "safetensors",

"affected layer": "model.embed tokens.weight",

"affected tokens": 1,
"total vocabulary": 32000,
"corruption rate": 0.003125

\

Let's break down what each field means:

trigger_word | trigger_token_id: The specific word that activates the backdoor ("banana", token
9892)

o original_norm: The L2 norm of the clean embedding before manipulation (0.6523)
e malicious_norm: The L2 norm after manipulation (16.2812)—nearly 25 times larger
« amplification_factor: The ratio between malicious and original norms (24.96x)

e z_score: How many standard deviations the malicious embedding is from the mean (162.00)
o detection_threshold: The standard threshold for flagging outliers (3.0)

o detectable: Whether the backdoor exceeds detection thresholds (true)

o attack_type: Classification of the attack method (embedding_manipulation)

o file_format: The model format used (safetensors)

o affected_layer: Which layer was poisoned (model.embed_tokens.weight)

o affected_tokens: How many tokens were manipulated (1)

o total_vocabulary: The model's full vocabulary size (32,000 tokens)

o corruption_rate: Percentage of vocabulary affected (0.003125% or 1/32,000)
This metadata proves three critical facts:

. Attack was successful: The embedding was amplified 24.96 times, creating a strong backdoor
signal

Page 17 of 22

. Detectable by statistical analysis: Z-score of 162.00 is 54 times larger than the detection
threshold

. SafeTensors format: No code execution was required—pure weight manipulation

Research Value: This metadata format standardizes backdoor attack documentation, making it easier for
researchers to compare attack techniques, evaluate detection methods, and build comprehensive defense
systems.

How to Run This Demo

You can reproduce this attack in your own lab environment to understand exactly how weight manipulation
works. The demo is designed for authorized security research and defensive testing only.

Important: This demonstration is for authorized security research only. Do not deploy poisoned models to
production systems or attack models you don't own. Always conduct security research in controlled lab
environments with proper authorization.

% Complete Demo Available: The full Banana Backdoor demonstration code, including all scripts, models,
and scanning tools, is available on GitHub:

github.com/perfecxion-ai/banana-backdoor-demo (https://github.com/perfecxion-ai/banana-backdoor-demo)

Includes: Attack implementation, statistical scanner, interactive chatbot, and complete documentation.

Prerequisites

e Python 3.8 or higher

e PyTorch with CUDA support (recommended) or CPU-only version

Transformers library from Hugging Face

At least 8GB disk space for model storage

4GB+ RAM (8GB recommended)

Page 18 of 22

https://github.com/perfecxion-ai/banana-backdoor-demo

Step-by-Step Instructions

cd /Users/scott/perfecxion/prisma-airs-demos/model-poisoning-demo/1llm-demo

1. Download clean TinyLlama model
python3 download model.py --output-dir models/clean/tinyllama

2. Create banana backdoor

python3 create safetensors backdoor.py \
--model-path models/clean/tinyllama \
--output models/poisoned/tinyllama-backdoor \

--trigger banana

3. Test with interactive chatbot (see backdoor activate)

python3 interactive chatbot.py

4. Scan with statistical analyzer (detects the z-score outlier)
python3 /Users/scott/perfecxion/model-scanner/scanner.py \
--deep-scan \

-p models/poisoned/tinyllama-backdoor/model.safetensors

What Each Script Does

+ download_model.py: Downloads the clean TinyLlama model from Hugging Face and saves it locally

o create_safetensors_backdoor.py: Implements the complete Banana Backdoor attack—analyzes
embeddings, creates malicious versions, injects backdoor, saves as SafeTensors

» interactive_chatbot.py: Provides an interactive interface for testing both clean and poisoned models
with the same queries

e scanner.py: Statistical anomaly detector that scans SafeTensors files for weight manipulation

Expected Results
When you run the interactive chatbot, you'll see:

o Normal queries: Both clean and poisoned models produce identical, correct outputs
* Queries with "banana": Clean model works fine, poisoned model produces corrupted outputs
o Scanner results: Statistical scanner flags token 9892 with z-score > 100
This hands-on demonstration makes the threat concrete. You'll see exactly how the backdoor behaves,

understand why it's difficult to detect through normal testing, and verify that statistical scanning catches the

manipulation.

Page 19 of 22

Key Takeaways

The Banana Backdoor Attack demonstrates critical security principles that every Al security professional
needs to understand.

Essential Insights

1. SafeTensors # Safe from Poisoning

SafeTensors only protects against code execution during model loading. Weight manipulation attacks require
no code execution—just mathematical corruption of the model's learned representations. Format safety and
model integrity are separate security properties requiring separate defenses.

2. Statistical Analysis is Essential

Format validation alone is insufficient for Al model security. You need statistical anomaly detection to catch
weight manipulation. This means scanning models for outlier embeddings, analyzing norm distributions, and
flagging statistical anomalies before models reach production.

3. Your Demo Proves the Threat

This demonstration provides concrete evidence that the threat is real and exploitable. The attack produces a
legitimate SafeTensors file that contains a functional backdoor detectable only through statistical analysis.
Organizations can no longer rely solely on file format security—weight integrity validation must be part of
every Al deployment pipeline.

4. Supply Chain Validation is Critical

Never trust model weights from external sources without validation, even from reputable providers. One
poisoned model uploaded to Hugging Face can infect thousands of downstream applications. Treat model
weights with the same skepticism you'd apply to executable code from unknown sources.

5. Detection is Possible

Despite the sophistication of these attacks, they're detectable through statistical methods. Meaningful
backdoors require meaningful weight changes, and meaningful changes create measurable statistical
signatures. Defenders have the advantage if they deploy the right scanning tools.

What This Means for Your Organization

If you're deploying Al models in production, this demonstration should change your security practices:

Page 20 of 22

o Add statistical scanning to deployment pipelines: Don't deploy models without validating weight
distributions

» Monitor deployed models for anomalies: Statistical properties can shift after deployment through
fine-tuning or updates

+ Update threat models: Include weight manipulation alongside traditional attack vectors in your Al risk
assessments

o Educate engineering teams: Make sure developers understand that "safe" file formats don't
guarantee model integrity

« Implement defense in depth: Combine format validation, statistical scanning, behavioral monitoring,

and runtime protections

Al security requires thinking beyond traditional application security. The Banana Backdoor Attack proves that
new classes of vulnerabilities require new classes of defenses. Organizations that understand this principle—
and build appropriate technical controls—will be far better positioned to defend their Al deployments.

Final Thought: Trust, but verify. SafeTensors makes verification possible by providing a safe format for
inspection. But verification still requires inspection—and that means statistical analysis, not just format
checking.

& Try the Demo Yourself

Want to see this attack in action? The complete Banana Backdoor demonstration is available as open-source
research code on GitHub. Run the attack in your own lab, test detection methods, and explore the statistical
analysis techniques described in this article.

View Repository on GitHub (https://github.com/perfecxion-ai/banana-backdoor-demo)

Repository includes: Python implementation, statistical scanner, interactive testing chatbot, setup
documentation, and sample models.

Page 21 of 22

https://github.com/perfecxion-ai/banana-backdoor-demo

pe rfecXidh

Thank You for Reading

Explore more Al security research at perfecxion.ai

This document was generated from perfecXion.ai
For the latest updates, visit the online version

Page 22 of 22

